DOI QR코드

DOI QR Code

Effect of Acetylene Mixing Rate on Synthesis of Carbon Nanotube

탄소나노튜브의 합성에 대한 아세틸렌 혼합 비율의 영향

  • Received : 2014.10.15
  • Accepted : 2014.12.26
  • Published : 2014.12.31

Abstract

In this study, experimental and numerical studies for the synthesis of carbon nanotube(CNT) in methane counterflow diffusion flame have been performed. Methane mixed with acetylene($C_2H_2$) was used as a fuel gas and ferrocene was used as a catalyst for synthesis of CNT. The major parameters was $C_2H_2$ mixing rate and mixing rates were 2 %, 6 %, and 10 %. Characteristics of CNT formation on grid were analyzed from SEM images. the chemical reaction mechanism adopted is GRI-MECH 3.0. Numerical results showed that flame temperature and CO mole fraction were increased with increasing acetylene mixing rate. Experimental results showed that the CNT synthesis in 2% acetylene mixture flame better than that of 6% and 10% acetylene mixture flames. It can be considered that 6% and 10% acetylene mixture flames generated the excessive carbon source and then it interrupted the supplement of the carbon source into ferrocene catalyst. It can be found that the supply of appropriate quantity of carbon source can make effect to synthesis of high purity of CNT.

본 연구에서는 메탄 대향류 확산 화염내 탄소나노튜브의 합성에 대하여 실험 및 수치적 연구를 수행하였다. 아세틸렌을 일정비율로 메탄에 혼합하여 연료 가스로 사용하였으며, 탄소나노튜브의 합성을 위한 촉매로서 페로센이 이용되었다. 주요 인자로는 메탄 연료에 대한 아세틸렌의 혼합비율이며, 2 %, 6 %, 10 %로 혼합하였다. 탄소나노튜브를 채취한 그리드 위의 탄소나노튜브 합성 특성은 SEM 이미지로 분석되었다. 수치해석에서 화학반응 메카니즘으로는 GRI-Mech 3.0 이 적용되었다. 수치결과로는 아세틸렌 혼합 비율이 증가할수록 화염 온도도 증가하며 CO 몰분율도 증가하는 것을 알 수 있다. 실험결과로는 2% 아세틸렌 혼합 화염이 6 % 및 10 % 혼합 화염과 비교해 탄소나노튜브 합성이 잘 이루어졌음을 알 수 있었다. 이것은 6 % 및 10 % 아세틸렌 혼합화염의 경우 과도한 카본 소스의 생성이 발생해 오히려 화염 내 카본소스가 촉매입자로의 공급을 방해하기 때문이라 생각한다. 이 결과로부터 양호한 질의 탄소나노튜브 생성을 위해서는 적정한 양의 카본소스가 생성되어야 한다는 것을 알 수 있었다.

Keywords

References

  1. Choi, J. H., J. H. Kim, W. J. Shin, J. S. Choi, K. B. Ryu, S. M. Lee, S. H. Park, J. H. Lee and T. W. Lim(2012), A Study on Synthesis of Carbon Nanomaterial as a Material for Eco-ship, The Korean Society of Marine Environment & Safety, Vol. 18, No. 5, pp. 468-474. https://doi.org/10.7837/kosomes.2012.18.5.468
  2. Gavillet, J., A. Loiseau, F. Ducastelle, S. Thair, P. Bernier and O. Stephan(2002), Microscopic mechanisms for the catalyst assisted growth of single-wall carbon nanotubes, Carbon, Vol. 40, pp. 1649-1663. https://doi.org/10.1016/S0008-6223(02)00007-6
  3. Gorbunov, A., O. Jost, W. Pumpe and A. Graff(2002), Solid-liquid-solid growth mechanism of single-wall carbon nanotubes, Carbon, Vol. 40, pp. 113-118. https://doi.org/10.1016/S0008-6223(01)00080-X
  4. Hu, W., D. Gong, Z. Chen, L. Yuan, K. Saito, C. A. Grimes and P. Kichambare(2001), Growth of well-aligned carbon nanotube arrays on silicon substrates using porous alumina film as a nanotemplate, Appl. Phys. Lett., Vol. 79, pp. 3083-3085. https://doi.org/10.1063/1.1415406
  5. Ito, H., Y. Nakade, T. Uchiyama and O. Fujita(2007), DC Biasing Effects on Carbon Nanotube Formation in Microgravity Diffusion Flame, J. Jpn. Soc. Microgravity Appl., Vol. 24, pp. 220-224.
  6. Kee, R. J., F. M. Rupley, E. Meeks and J. A. Miller(1996), Sandia National Laboratories Report No. SAND96-8216.
  7. Kee, R. J., J. Warnatz and J. A. Miller, A FORTRAN Computer Code Package for the Evaluation of Gas-phase Viscosities, Conductivities and Diffusion Coefficients, Report No. SAND83-8209, Sandia National Laboratories, 1983.
  8. Lee, G. W., J. Jurng and J. Hwang(2004), Effects of the Distribution of Nickel-Nitrate and the Substrate Temperature on the Synthesis of Multi-Walled Carbon Nanotubes, Trans. Korean Soc. Mech. Eng.(B), Vol. 28, pp. 215-222. https://doi.org/10.3795/KSME-B.2004.28.2.215
  9. Lutz, A. E., R. J. Kee, J. F. Grcar, and F. M. Rupley, OPPDIF: A Fortran Program for Computing Opposed-Flow Diffusion Flames, Report No. SAND96-8243, Sandia National Laboratories, 1997.
  10. Lyu, S. C., J. H. Sok and J. H. Han(2009), Technical trends of carbon nnotubes growth method, KIC News, Vol. 12, pp. 1-11.
  11. Mamalis, A. G., L. O. G. Vogtlander and A. Markopoulos (2004), Nanotechnology and nanostructured materials: trends in carbon nanotubes, Precision Engineering, Vol. 28, pp. 16-30. https://doi.org/10.1016/j.precisioneng.2002.11.002
  12. Park, S. J(2006), Principle and practical of carbon material, Daeyoung-sa, p. 137.
  13. Saveliev, A. V., W. Merchan-Merchan and L. A. Kennedy (2003), Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame, Combust. Flame, Vol. 135, pp. 27-33. https://doi.org/10.1016/S0010-2180(03)00142-1
  14. Smith, G. P., D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Jr. Lissianski and Z. Qin(2000) GRI-Mech 3.0., http://www.me.berkeley.edu/gri_mech/
  15. Yuan, L. T. Li, K. Saito(2003), Growth mechanism of carbon nanotubes in methane diffusion flames, Carbon, Vol. 41, pp. 1889-1896. https://doi.org/10.1016/S0008-6223(03)00204-5