• 제목/요약/키워드: Fpase

검색결과 37건 처리시간 0.021초

Developing A Framework for Performance Assessment in Science Education

  • Kim, Eun-Jin;Park, Hyun-Ju;Kang, Ho-Kam;Noh, Suk-Goo
    • 한국과학교육학회지
    • /
    • 제23권4호
    • /
    • pp.319-330
    • /
    • 2003
  • The purpose of this study is to develop a Framework for Performance Assessment in Science Education(FPASE). Science educators in the past have paid more attention to science curriculum and teaching strategies than assessment. In recent years, attention has turned toward performance assessment which addresses the concerns of science curriculum and instruction, and which is consistent with goals of science education at various levels of interests. Science educators are trying to do performance assessment, yet they don't have a framework that is highly qualified in terms of science educational objectives for the future, and advantages of performance assessment. We, therefore, have developed a framework for performance assessment in science education, which may be useful for science teachers to understand and assess their students' abilities. We have extracted seven domains covering students' various abilities as the important objectives of science performance assessment and grouped them into three categories: General, Science specific, and Intermediate abilities. And we developed a F-PASE with a three dimensional solid figured structure, and illustrated it as the configuration of a com. F-PASE is useful for science teachers to develop and select a science performance assessment as well as have a more advanced understanding of their students' abilities. It is a creative and novel assessment framework in terms of structure, configuration, functions and meanings. It also suggests a new vision of an assessment framework in science education.

Hydrolysis of Empty Fruit Bunch of Oil Palm Using Cellulolytic Enzymes from Aspergillus terreus IMI 28243

  • Kader, Jalil;Krishnasamy, Getha;Mohtar, Wan;Omar, Othman
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권4호
    • /
    • pp.514-517
    • /
    • 1999
  • Hydrolysis of EFB (empty fruit bunch) derived from oil palm was studied using crude enzyme from Aspergillus terreus IMI 282743 along with commercial enzymes from Trichoderma reesei and Aspergillus niger. Hydrolysis at $40^{\circ}C$ and $50^{\circ}C$ with $\alpha$-cellulose or EFB gave significantly lower yield when commercial enzymes of T. reesei and A. niger were used and the hydrolysis time extended beyond 10 h. After 24 h of hydrolysis at $40^{\circ}C$ and $50^{\circ}C$, the filter paper activity (Fpase) from A. terreus retained as much activity as A. niger and it was significantly higher than T. reesei. Glucose concentration of 0.25% and 0.5% caused significant inhibition in the crude enzyme, but in regards to the commercial enzymes it only showed a slight effect. Crude enzymes from A. terreus could produce the highest reducing sugars when compared to commercial enzymes from T. reesei or A. niger. Nevertheless, low yield of sugar was observed for EFB for all treatments.

  • PDF

Trichoderma harzianum FJ1의 고체상태배양에 의한 섬유소분해효소의 생산 (Production of Cellulolytic Enzymes by Trichoderma harzianum FJ1 in Solid State Fermentation.)

  • 유승수;김경철;김성준
    • 한국미생물·생명공학회지
    • /
    • 제31권3호
    • /
    • pp.257-263
    • /
    • 2003
  • 고체상태배양에서 섬유소분해효소의 고 생산을 위해 기질로서 다양한 섬유순폐기물을 검토한 결과, 주정박과 볏짚을 1:1의 혼합기질로 사용하였을 때 13.98 FPA를 얻었다. 효소생산을 높이기 위해 주정박과 볏짚의 혼합기질에 질소원으로서 콩비지를 1:1:1로 혼합하였을 때 15.22 FPA의 효소활성을 얻을 수 있었다. 이때의 최적의 함수율, pH, 온도는 각각 70%, 5.0, 3$0^{\circ}C$이었다. 최적배양조건에서 배양 5일째 FPA, CMCase, Xylanase, $\beta$-glucosidase 및 Avicelase의 효소활성은 각각 15.22, 69.1, 83.9, 29.2 및 4.2 unit/g-SDW이었다. T. harzianum FJI의 섬유소폐기물을 이용한 고체상 태배양의 경제적인 효소생산은 섬유소폐기물의 생물학적 당화기술에 크게 기여할 것이다.

Identification and Characterization of an Anaerobic Ethanol-Producing Cellulolytic Bacterial Consortium from Great Basin Hot Springs with Agricultural Residues and Energy Crops

  • Zhao, Chao;Deng, Yunjin;Wang, Xingna;Li, Qiuzhe;Huang, Yifan;Liu, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권9호
    • /
    • pp.1280-1290
    • /
    • 2014
  • In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA library-based analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.

Production and Characterization of Multi-Polysaccharide Degrading Enzymes from Aspergillus aculeatus BCC199 for Saccharification of Agricultural Residues

  • Suwannarangsee, Surisa;Arnthong, Jantima;Eurwilaichitr, Lily;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권10호
    • /
    • pp.1427-1437
    • /
    • 2014
  • Enzymatic hydrolysis of lignocellulosic biomass into fermentable sugars is a key step in the conversion of agricultural by-products to biofuels and value-added chemicals. Utilization of a robust microorganism for on-site production of biomass-degrading enzymes has gained increasing interest as an economical approach for supplying enzymes to biorefinery processes. In this study, production of multi-polysaccharide-degrading enzymes from Aspergillus aculeatus BCC199 by solid-state fermentation was improved through the statistical design approach. Among the operational parameters, yeast extract and soybean meal as well as the nonionic surfactant Tween 20 and initial pH were found as key parameters for maximizing production of cellulolytic and hemicellulolytic enzymes. Under the optimized condition, the production of FPase, endoglucanase, ${\beta}$-glucosidase, xylanase, and ${\beta}$-xylosidase was achieved at 23, 663, 88, 1,633, and 90 units/g of dry substrate, respectively. The multi-enzyme extract was highly efficient in the saccharification of alkaline-pretreated rice straw, corn cob, and corn stover. In comparison with commercial cellulase preparations, the BCC199 enzyme mixture was able to produce remarkable yields of glucose and xylose, as it contained higher relative activities of ${\beta}$-glucosidase and core hemicellulases (xylanase and ${\beta}$-xylosidase). These results suggested that the crude enzyme extract from A. aculeatus BCC199 possesses balanced cellulolytic and xylanolytic activities required for the efficient saccharification of lignocellulosic biomass feedstocks, and supplementation of external ${\beta}$-glucosidase or xylanase was dispensable. The work thus demonstrates the high potential of A. aculeatus BCC199 as a promising producer of lignocellulose-degrading enzymes for the biomass conversion industry.

Cellulomonas sp. YE-5가 생산하는 Cellulase의 정제 (Purification of Cellulase Produced from Cellulomonas sp. YE-5)

  • 최동철;허남윤;오두환;유주현
    • 한국미생물·생명공학회지
    • /
    • 제18권4호
    • /
    • pp.376-382
    • /
    • 1990
  • 토양과 퇴비 등에서 섬유소 자화력이 있는 세균을 분리하고 이 균주들 중 cellulase 생산능이 가장 우수한 균주를 선별하여 Cellulomonas sp.로 동정하였다. Cellulomonas sp. YE-5의 최적 배양조건은 pH6.5 Solka floc 0.8(w/v), urea 0.06(w/v), K2HPO4 0.1(w/v), bacto peptone 0.2(w/v), yeast extract 0.2(w/v) 그리고 MgSO4.7H2O 0.0(w/v) 이었으며, 이러한 배지를 사용하여 $30^{\circ}C$ 에서 48시간 배양하였을 때 avicelase, CMCase 그리고 Beta-glucosidase는 각각 0.350, 3.180, 0.882units/ml의 활성을 나타내었다.

  • PDF

Saccharification of Foodwastes Using Cellulolytic and Amylolytic Enzymes from Trichoderma harzianum FJ1 and Its Kinetics

  • Kim Kyoung-Cheol;Kim Si-Wouk;Kim Myong-Jun;Kim Seong-Jun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권1호
    • /
    • pp.52-59
    • /
    • 2005
  • The study was targeted to saccharify foodwastes with the cellulolytic and amylolytic enzymes obtained from culture supernatant of Trichoderma harzianum FJ1 and analyze the kinetics of the saccharification in order to enlarge the utilization in industrial application. T. harzianum FJ1 highly produced various cellulolytic (filter paperase 0.9, carboxymethyl cellulase 22.0, ${\beta}$-glucosidase 1.2, Avicelase 0.4, xylanase 30.8, as U/mL-supernatant) and amylolytic (${alpha}$-amylase 5.6, ${\beta}$-amylase 3.1, glucoamylase 2.6, as U/mL-supernatant) enzymes. The $23{\sim}98\;g/L$ of reducing sugars were obtained under various experimental conditions by changing FPase to between $0.2{\sim}0.6\;U/mL$ and foodwastes between $5{\sim}20\%$ (w/v), with fixed conditions at $50^{\circ}C$, pH 5.0, and 100 rpm for 24 h. As the enzymatic hydrolysis of foodwastes were performed in a heterogeneous solid-liquid reaction system, it was significantly influenced by enzyme and substrate concentrations used, where the pH and temperature were fixed at their experimental optima of 5.0 and $50^{\circ}C$, respectively. An empirical model was employed to simplify the kinetics of the saccharification reaction. The reducing sugars concentration (X, g/L) in the saccharification reaction was expressed by a power curve ($X=K{\cdot}t^n$) for the reaction time (t), where the coefficient, K and n. were related to functions of the enzymes concentrations (E) and foodwastes concentrations (S), as follow: $K=10.894{\cdot}Ln(E{\cdot}S^2)-56.768,\;n=0.0608{\cdot}(E/S)^{-0.2130}$. The kinetic developed to analyze the effective saccharification of foodwastes composed of complex organic compounds could adequately explain the cases under various saccharification conditions. The kinetics results would be available for reducing sugars production processes, with the reducing sugars obtained at a lower cost can be used as carbon and energy sources in various fermentation industries.