• Title/Summary/Keyword: Fourier optics

Search Result 141, Processing Time 0.025 seconds

Synchronization of a Silica Microcomb to a Mode-locked Laser with a Fractional Optoelectronic Phase-locked Loop

  • Hui Yang;Changmin Ahn;Igju Jeon;Daewon Suk;Hansuek Lee;Jungwon Kim
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.557-561
    • /
    • 2023
  • Ultralow-noise soliton pulse generation over a wider Fourier frequency range is highly desirable for many high-precision applications. Here, we realize a low-phase-noise soliton pulse generation by transferring the low phase noise of a mode-locked laser to a silica microcomb. A 21.956-GHz and a 9.9167-GHz Kerr soliton combs are synchronized to a 2-GHz and a 2.5-GHz mode-locked laser through a fractional optoelectronic phase-locked loop, respectively. The phase noise of the microcomb was suppressed by up to ~40 dB at 1-Hz Fourier frequency. This result provides a simple method for low-phase-noise soliton pulse generation, thereby facilitating extensive applications.

Design of Deeply Etched InGaAsP Phased-Array Wavelength Router with Flat Passband (깊이 식각된 InGaAsP 광도파로로 구성된 위상 배열 파장 라우터의 평탄화 설계)

  • Park, Joon-Oh;Chung, Young-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.195-196
    • /
    • 2000
  • A passband-flattening technique based on Fourier optics concept for phased-array wavelength router is presented. For easy control of optical power in each waveguide without phase correction, misaligned array waveguides are used. BPM simulation results indicate that flat passband is as wide as 75 % of the channel spacing with the insertion loss penalty of about 6 dB and with the crosstalk of about -28 dB.

  • PDF

An Optical Asynchronous Transfer Mode(ATM) Switching System Using Free Space Optics and an Output Buffer Memory (자유공간 광학과 출력 버퍼 메모리를 이용한 광 Asynchronous Transfer Mode(ATM) 교환방식)

  • 지윤규;이상신
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.4
    • /
    • pp.326-334
    • /
    • 1991
  • We propose an optical Asynchronous Transfer Mode(ATM) switching system using free-space optics and an output buffer memory. The distributor system in the switching fabric was analyzed using the Huygens-Fresnel principle and lens transformation. For monochromatic illumination, a pattern similar to the Fourier transform of the input distribution was observed across the output plane. A spatially broadened intensity distribution across the the output plane can be expected when the system is illminated with a partially coherent, quasimonochromatic beam. Spatially coherent pulses as short as 100fs can propagate through the distributor without severe spatial broadening.

  • PDF

A Development of the Analysis Technique for Radar Target Signature and the Sofware using RCS/ISAR (RCS/ISAR를 이용한 레이다 표적분석 기법 및 소프트웨어 개발)

  • Kwon Kyoung-IL;Yoo Ji-Hee;Chung Myung-Soo;Yoon Taehwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.2 s.17
    • /
    • pp.88-99
    • /
    • 2004
  • A development of a software on radar target signature analysis is presented in this paper The target signature includes Radar Cross Section(RCS) prediction, Range Profile(RP) processing and Inverse Synthetic Aperture Radar(ISAR) processing. Physical Optics(PO) is the basic calculation method for RCS prediction and Geometrical Optics(GO) is used for ray tracing in the field calculation of multiple reflection. For RP and ISAR, Fast Fourier Transform(FFT) and Matrix Pencil(MP) method were implemented for post-processing. Those results are integrated into two separate softwares named as Radar Target Signature Generator(RTSG) and Radar Target Signature Analyser(RTSA). Several test results show good performances in radar signature prediction and analysis.

High-frequency Back-scattering Cross Section Analysis of Rotating Targets (회전 표적의 고주파수 후방산란단면적 해석)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Kim, Jin-Hyeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.16-24
    • /
    • 2007
  • The high-frequency analysis method of back-scattering cross section spectrum of rotating targets is established. The time history of the back-scattering cross section is calculated using a quasi-stationary approach, based on a physical optics and a physical theory of diffraction, combining an adaptive triangular beam method to consider the shadow effect. And the spectra of back-scattering cross section by the Doppler effect are analyzed applying a simple fast Fourier transform method to its time history. The numerical calculation for rotating targets, such as rotating metal plates and underwater propeller, are carried out. The time history appears to be periodic with respect to the number of wings. The backscattering cross section spectrum level and its frequency shift are dependent on the rotating speed, direction, and the shape of the targets.

Optical encryption system using visual cryptography and virtual phase images (시각 암호화와 가상 위상영상을 이용한 광 암호화 시스템)

  • 김인식;서동환;신창목;조규보;김수중;노덕수
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.630-635
    • /
    • 2003
  • We propose an encryption method using visual cryptography and virtual phase images. In the encryption process, the original image is shared by virtual images and the decryption key image. We multiply the virtual phase images with each complex image, which has the constant value of its sum after performing the phase modulation of the virtual images and the decryption key. The encryption cards are made by Fourier transforming the multiplied images. It is possible to protect information about the original image because the cards do not have any information from the original image. To reconstruct the original image, all the encryption cards are placed on each path of a Mach-Zehnder interferometer and then the lights passing through them are summed. Since the summed image is inverse Fourier transformed by a Fourier lens, the phase image is multiplied with the decryption key and the output image is obtained in the form of intensity on the CCD plane. Computer simulations show a good performance of the pro-posed optical security system.

Retrieving Phase from Single Interferogram with Spatial Carrier Frequency by Using Morlet Wavelet

  • Hongxin Zhang;Mengyuan Cui
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.529-536
    • /
    • 2023
  • The Morlet wavelet transform method is proposed to analyze a single interferogram with spatial carrier frequency that is captured by an optical interferometer. The method can retain low frequency components that contain the phase information of a measured optical surface, and remove high frequency disturbances by wavelet decomposition and reconstruction. The key to retrieving the phases from the low-frequency wavelet components is to extract wavelet ridges by calculating the maximum value of the wavelet transform amplitude. Afterwards, the wrapped phases can be accurately solved by multiple iterative calculations on wavelet ridges. Finally, we can reconstruct the wave-front of the measured optical element by applying two-dimensional discrete cosine transform to those wrapped phases. Morlet wavelet transform does not need to remove the spatial carrier frequency components manually in the processing of interferogram analysis, but the step is necessary in the Fourier transform algorithm. So, the Morlet wavelet simplifies the process of the analysis of interference fringe patterns compared to Fourier transform. Consequently, wavelet transform is more suitable for automated programming analysis of interference fringes and avoiding the introduction of additional errors compared with Fourier transform.

Holographic Recording Versus Holographic Lithography

  • Seungwoo Lee
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.638-654
    • /
    • 2023
  • Holography is generally known as a technology that records and reconstructs 3D images by simultaneously capturing the intensity and phase information of light. Two or more interfering beams and illumination of this interference pattern onto a photosensitive recording medium allow us to control both the intensity and phase of light. Holography has found widespread applications not only in 3D imaging but also in manufacturing. In fact, it has been commonly used in semiconductor manufacturing, where interference light patterns are applied to photolithography, effectively reducing the half-pitch and period of line patterns, and enhancing the resolution of lithography. Moreover, holography can be used for the manufacturing of 3D regular structures (3D photonic crystals), not just surface patterns such as 1D or 2D gratings, and this can be broadly divided into (i) holographic recording and (ii) holographic lithography. In this review, we conceptually contrast two seemingly similar but fundamentally different manufacturing methods: holographic recording and holographic lithography. We comprehensively describe the differences in the manufacturing processes and the resulting structural features, as well as elucidate the distinctions in the diffractive optical properties that can be derived from them. Lastly, we aim to summarize the unique perspectives through which each method can appear distinct, with the intention of sharing information about this field with both experts and non-experts alike.

Optical encryption and decryption technique using virtual image in frequency domain (가상 영상을 이용한 주파수 영역에서의 광학적 암호화 및 복호화 방법)

  • 서동환;조규보;박세준;김수중;김정우;노덕수
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.255-259
    • /
    • 2003
  • In this paper, we propose an improved image encryption and decryption method using a virtual image and a joint transform correlator (JTC). The encrypted image is obtained by the Fourier transform of the product of a virtual-phase image and a random-phase image, and a Fourier transform of the decrypting key generated by the proposed phase assignment rule is used as the Fourier decrypting key. Based on the solution, the original image is reconstructed using JTC in the frequency-domain. The proposed method using a virtual image, which does not contain any information from the original image, prevents the possibility of counterfeiting by unauthorized people. And also the auto-correlation terms, which are the drawback of a JTC system, contribute to reconstructing the original image rather than to disturbing its identification. But because phase-only encryptions are sensitive to noise and scratches, phase errors can be generated in fabricating the encrypted image or the Fourier decrypting key so the errors that are responsible for degradation of the quality of the reconstructed image are analyzed and the solution is demonstrated. Computer simulations show the solution, and the proposed method is very useful for JTC architecture.

Angle of view polarization characterization of LCDs

  • Boher, P.;Bignon, T.;Leroux, T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1615-1618
    • /
    • 2007
  • Performances of LCDs are generally evaluated in terms of luminance and color versus viewing angle. In the present paper we show that this type of display can be favorably characterized in terms of polarization. We show that ELDIM EZContrast instrument can be used to measure the degree of polarization the light and the ellipticity and polarization direction of the polarized component. This measurement is made versus incidence angle between 0 and $88{\circ}$ and for all the azimuth angles. Important differences between the displays can be detected and related to their internal structures when luminance and color profiles are quite similar.

  • PDF