• 제목/요약/키워드: Fourier modal analysis

검색결과 62건 처리시간 0.023초

지수창함수를 사용한 임팩트햄머 실험에서 주파수응답함수의 왜곡과 개선책 (FRF Distortion Caused by Exponential Window Function on Impact Hammer Testing and Its Solution)

  • 안세진;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제13권5호
    • /
    • pp.334-340
    • /
    • 2003
  • Exponential window function Is widely used In impact hammer testing to reduce leakage error as well as to get a good S/N ratio. The larger its decaying rate is, the more effectively the leakage errors are reduced. But if the decay rate of the exponential window is too large, the FRF is distorted. And the modal parameters of the system can not be exactly identified by modal analysis technique. Therefore, it is a difficult problem to determine proper decay rate in impact hammer testing. In this paper, amount of the FRF distortion caused by exponential window is theoretically uncovered. A new circle fitting method is also proposed so that the modal parameters are directly extracted from impulse response spectrum distorted by the exponential-windowed impulse response data. The results by the conventional and proposed circle fitting method are compared through a numerical example.

The G. D. Q. method for the harmonic dynamic analysis of rotational shell structural elements

  • Viola, Erasmo;Artioli, Edoardo
    • Structural Engineering and Mechanics
    • /
    • 제17권6호
    • /
    • pp.789-817
    • /
    • 2004
  • This paper deals with the modal analysis of rotational shell structures by means of the numerical solution technique known as the Generalized Differential Quadrature (G. D. Q.) method. The treatment is conducted within the Reissner first order shear deformation theory (F. S. D. T.) for linearly elastic isotropic shells. Starting from a non-linear formulation, the compatibility equations via Principle of Virtual Works are obtained, for the general shell structure, given the internal equilibrium equations in terms of stress resultants and couples. These equations are subsequently linearized and specialized for the rotational geometry, expanding all problem variables in a partial Fourier series, with respect to the longitudinal coordinate. The procedure leads to the fundamental system of dynamic equilibrium equations in terms of the reference surface kinematic harmonic components. Finally, a one-dimensional problem, by means of a set of five ordinary differential equations, in which the only spatial coordinate appearing is the one along meridians, is obtained. This can be conveniently solved using an appropriate G. D. Q. method in meridional direction, yielding accurate results with an extremely low computational cost and not using the so-called "delta-point" technique.

Ni 박판의 초음파 용착시 최적용착 조건 (Optimal Welding condition in Ultrasonic Welding of Ni steel sheet)

  • 서정석;박동삼
    • 한국기계가공학회지
    • /
    • 제9권2호
    • /
    • pp.47-52
    • /
    • 2010
  • Miniaturization and lightweight are increasingly the recent trend in the manufacture of electric appliances and machine parts. So technology of micro joining for joining materials is indispensable. This paper gives a description of an experimental study of the ultrasonic welding of metals. In ultrasonic metal welding, high frequency vibrations are combined with pressure to join two materials together quickly and securely, without producing significant amount of heat. Ultrasonic metal welder consists of Transducer, Booster, and Horn that are designed very accurately to get the natural frequencies and vibration mode. In this study, The horn was designed and analyzed the natural frequency by the modal analysis and harmonic analysis. And using a fiber optic sensor, we measured the amplitude and analyzed the Fast Fourier Transformed result. Using the horn, Ultrasonic metal welding between Ni sheet and Ni sheet of 0.1mm thickness was accomplished under the optimal conditions of static pressure 0.15MPa, vibration amplitude 45% and welding time of 0.28s. This result can be used for ultrasonic metal welding in manufacturing industry.

Free vibration analysis of rotating tapered blades using Fourier-p superelement

  • Gunda, Jagadish Babu;Singh, Anuj Pratap;Chhabra, Parampal Singh;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • 제27권2호
    • /
    • pp.243-257
    • /
    • 2007
  • A numerically efficient superelement is proposed as a low degree of freedom model for dynamic analysis of rotating tapered beams. The element uses a combination of polynomials and trigonometric functions as shape functions in what is also called the Fourier-p approach. Only a single element is needed to obtain good modal frequency prediction with the analysis and assembly time being considerably less than for conventional elements. The superelement also allows an easy incorporation of polynomial variations of mass and stiffness properties typically used to model helicopter and wind turbine blades. Comparable results are obtained using one superelement with only 14 degrees of freedom compared to 50 conventional finite elements with cubic shape functions with a total of 100 degrees of freedom for a rotating cantilever beam. Excellent agreement is also shown with results from the published literature for uniform and tapered beams with cantilever and hinged boundary conditions. The element developed in this work can be used to model rotating beam substructures as a part of complete finite element model of helicopters and wind turbines.

HYDROELASTIC VIBRATION ANALYSIS OF TWO FLEXIBLE RECTANGULAR PLATES PARTIALLY COUPLED WITH A LIQUID

  • Jeong, Kyeong-Hoon;Kim, Jong-Wook
    • Nuclear Engineering and Technology
    • /
    • 제41권3호
    • /
    • pp.335-346
    • /
    • 2009
  • This paper deals with a hydroelastic vibration analysis of two rectangular plates partially coupled with a liquid, which is bounded by two plates and two rigid side walls. The wet displacement of each plate is assumed to be a combination of the modal functions of a dry uniform beam with a clamped boundary condition. As the liquid is assumed to be an ideal liquid, the displacement potential satisfying the Laplace equation is determined so that the liquid boundary conditions can meet the requirements at the rigid surfaces and the free liquid surface. The wet dynamic modal functions of each plate are expanded by using the finite Fourier transform to obtain an appropriate form of the compatibility requirement along the contacting surfaces between the plates and the liquid. The liquid-coupled natural frequencies of the plates are derived by using the Rayleigh-Ritz method. Finite element analyses using commercial software are carried out to verify the proposed theory. It is observed that the theoretical method agrees excellently with the three-dimensional finite element analyses results. The effects of the liquid depth and the liquid thickness on the normalized natural frequencies are investigated to identify the dynamic characteristics of the liquid coupled system.

과도 입력파워에 대한 보와 평판의 파워흐름해석 (Transient Power Flow Analysis of Beam and Plate)

  • 황대웅;서성훈;권현웅;홍석윤
    • 한국소음진동공학회논문집
    • /
    • 제17권7호
    • /
    • pp.624-631
    • /
    • 2007
  • PFA (power flow analysis) has been recognized as a useful method in vibration analysis of medium-to-high frequency ranges. Until now, PFA method has been developed for steady-state vibration problems. In this paper, PFA method has been expanded to transient problem. New energy governing equations are derived considering time dependent terms in beam and plate. Analytic solutions of those equations are found in simple beam and plate, and are verified by comparing with modal solutions.

금속-압전세라믹 복합 평판의 진동해석 (The Vibration Analysis for the Metal-Piezoceramic Composite Thin Plates)

  • 고영준;남효덕;장호경
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1999년도 학술발표대회 논문집 제18권 1호
    • /
    • pp.307-310
    • /
    • 1999
  • An analysis of the free vibration for the metal-piezoceramic composite thin plates is described. The purpose of this study is to develop a equivalent method for the free vibration analysis of metal-piezoceramic composite thin plates which are not symmetrically about the adhered layer and the piezoelectric effect. In order to confirm the validity of the vibration analysis, double Fourier sine series is used as a modal displacement function of a metal-piezoceramic composite thin plate and applied to the free vibration analysis of the plate under various boundary conditions.

  • PDF

표면부착형 영구자석 동기전동기의 진동 특성 해석 (Vibration Characteristics Analysis of Surface-mounted Permanent Magnet Synchronous Motor)

  • 최장영;박형일;신현재;유대준;장석명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1083-1084
    • /
    • 2011
  • This paper deals with the vibration characteristics analysis of surface-mounted permanent magnet synchronous motor. To analyze the vibration characteristics, In order to find the frequency of exciting vibration forces, torque ripple and radial force were analyzed by fast fourier transform (FFT), and stator were analyzed by modal analysis.

  • PDF

사다리꼴 회절격자에서 테이퍼 측면의 광학적 효과에 대한 정확한 분석 (Rigorous Analysis for Optical Impacts of Tapered Sidewall Profile on Trapezoidal Diffraction Grating)

  • 호광춘
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권5호
    • /
    • pp.151-156
    • /
    • 2020
  • 주기적인 사다리꼴 격자구조에서 광 신호의 회절 특성과 테이퍼 측면의 중요한 효과를 분석하기 위하여, 처음으로 격자구조의 Toeplitz 유전율 tensor를 2D spatial Fourier 급수로 정의하고 공식화하였다. 그때 각 층에서의 필드들은 고유치 문제에 기초하여 표현하였으며, 완전한 해는 적절한 경계 값 문제에 의존하는 모드 전송선로 이론 (MTLT)을 사용하여 정확하게 유도하였다. 이에 기초하여, 사다리꼴 형태의 굴절률 분포를 갖는 격자구조의 테이퍼 측면 프로파일이 서브 파장 격자 반사기 설계에 어떠한 영향을 미치는지 자세하게 수치해석 하였다. 사다리꼴 격자구조의 회절특성에 기초한 수치해석 결과, 테이퍼 측벽 프로파일은 반사 대역폭, 평균 반사율, 그리고 밴드 에지를 결정하는 데 중요한 역할을 하는 것으로 나타났다.

Free Vibration Analysis of Perforated Plate Submerged in Fluid

  • Jhung, Myung-Jo;Jo, Jong-Chull;Jeong, Kyeong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1323-1338
    • /
    • 2006
  • An analytical method to estimate the coupled frequencies of the circular plate submerged in fluid is developed using the finite Fourier-Bessel series expansion and Rayleigh-Ritz method. To verify the validity of the analytical method developed, finite element method is used and the frequency comparisons between them are found to be in good agreement. For the perforated plate submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the plate and the fluid at the same time. This necessitates the use of solid plate with equivalent material properties. Unfortunately the effective elastic constants suggested by the ASME code are found to be not valid for the modal analysis. Therefore in this study the equivalent material properties of perforated plate are suggested by performing several finite element analyses with respect to the ligament efficiencies.