• Title/Summary/Keyword: Fourier Transform Spectroscopy

Search Result 1,028, Processing Time 0.026 seconds

Influence of Urea Precursor on the Electrochemical Properties of Ni-Co-based Metal Organic Framework Electrodes for Supercapacitors

  • Jung, Ye Seul;Jung, Yongju;Kim, Seok
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.523-531
    • /
    • 2022
  • A NiCo-metal organic framework (MOF) electrode, prepared using urea as a surfactant, was synthesized using a one-pot hydrothermal method. The addition of urea to the NiCo-MOF creates interstitial voids and an ultra-thin nanostructure in the NiCo-MOF, which improves its charge transfer performance. We obtained the optimal metal to surfactant ratio to achieve the best specific capacitance. The NiCo-MOF was employed as the working electrode material in a three-electrode system. Field emission scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy were employed to characterize the microstructures and morphologies of the composites. Cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy curves were employed to quantify the electrochemical properties of the electrodes in a 6 M KOH electrolyte.

Hot stage microscopy and its applications in pharmaceutical characterization

  • Arun Kumar;Pritam Singh;Arun Nanda
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.12.1-12.11
    • /
    • 2020
  • Hot stage microscopy (HSM) is a thermal analysis technique that combines the best properties of thermal analysis and microscopy. HSM is rapidly gaining interest in pharmaceuticals as well as in other fields as a regular characterization technique. In pharmaceuticals HSM is used to support differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA) observations and to detect small changes in the sample that may be missed by DSC and TGA during a thermal experiment. Study of various physical and chemical properties such sample morphology, crystalline nature, polymorphism, desolvation, miscibility, melting, solid state transitions and incompatibility between various pharmaceutical compounds can be carried out using HSM. HSM is also widely used to screen cocrystals, excipients and polymers for solid dispersions. With the advancements in research methodologies, it is now possible to use HSM in conjunction with other characterization techniques such as Fourier transform infrared spectroscopy (FTIR), DSC, Raman spectroscopy, scanning electron microscopy (SEM) which may have additional benefits over traditional characterization techniques for rapid and comprehensive solid state characterization.

Effect of residual oxygen in a vacuum chamber on the deposition of cubic boron nitride thin film

  • Oh, Seung-Keun;Kang, Sang Do;Kim, Youngman;Park, Soon Sub
    • Journal of Ceramic Processing Research
    • /
    • v.17 no.7
    • /
    • pp.763-767
    • /
    • 2016
  • The structural characterization of cubic boron nitride (c-BN) thin films was performed using a B4C target in a radio-frequency magnetron sputtering system. The deposition processing conditions, including the substrate bias voltage, substrate temperature, and base pressure were varied. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to analyze the crystal structures and chemical binding energy of the films. For the BN film deposited at room temperature, c-BN was formed in the substrate bias voltage range of -400 V to -600 V. Less c-BN fraction was observed as the deposition temperature increased, and more c-BN fraction was observed as the base pressure increased.

Green Synthesis of Dual Emission Nitrogen-Rich Carbon Dot and Its Use in Ag+ Ion and EDTA Sensing

  • Le Thuy Hoa;Jin Suk Chung;Seung Hyun Hur
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.463-471
    • /
    • 2023
  • Nitrogen-rich carbon dots (NDots) were synthesized by using uric acid as carbon and nitrogen sources. The as-synthesized NDots showed strong dual emissions at 420 nm and 510 nm with excitation at 350 nm and 460 nm, respectively. The physicochemical analyses such as X-ray photoelectron spectroscopy, Transmission electron microscopy and Fourier transform infrared spectroscopy were used to analyze the chemical, physical and morphological structures of NDots. The as-synthesized NDots exhibited wide linear range (0-100 µM) and very low detection limit (124 nM) in Ag+ ion sensing. In addition, Ag+ saturated NDots could be used as an EDTA sensor by the EDTA induced PL recovery.

Extracted Catechin Incorporated Chitosan Patch for Dermal Drug Delivery Systems

  • Seunghwan Choy
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.458-464
    • /
    • 2023
  • In order to develop catechin patches for skin regeneration at wound sites, patches with varying concentrations of catechin and chitosan were manufactured. An optimal composition ratio was determined by adjusting the drug release rate and amount, to maximize efficiency. The catechin used in this study was extracted from green tea leaves using a solvent/ultrasonication method, and its characteristics were confirmed through Fourier transform-infrared spectroscopy (FT-IR) and high-performance liquid chromatography (HPLC) analyses. Patches were prepared with different concentrations of catechin and chitosan, and various properties were analyzed using techniques such as FT-IR, water contact angle analysis, and UV-Vis spectroscopy. It was observed that as the chitosan concentration increased, the release of catechin slowed down or almost ceased. A patch manufactured with 1.5 mg/cm2 of catechin at a 1 % chitosan concentration exhibited a high initial release rate over 24 h and demonstrated cellular biocompatibility. Consequently, these patches, with tailored release characteristics based on the concentrations of chitosan and catechin, hold promise for use as drug delivery systems in wound healing applications.

Rapid discrimination system of Chinese cabbage (Brassica rapa) at metabolic level using Fourier transform infrared spectroscopy (FT-IR) based on multivariate analysis (배추 대사체 추출물의 FT-IR 스펙트럼 및 다변량 통계분석을 통한 계통 신속 식별 체계)

  • Ahn, Myung Suk;Lim, Chan Ju;Song, Seung Yeob;Min, Sung Ran;Lee, In Ho;Nou, Ill-Sup;Kim, Suk Weon
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.383-390
    • /
    • 2016
  • To determine whether FT-IR spectral analysis based on multivariate analysis could be used to discriminate Chinese cabbage breeding line at metabolic level, whole cell extracts of nine different breeding lines (three paternal, three maternal and three $F_1$ lines) were subjected to Fourier transform infrared spectroscopy (FT-IR). FT-IR spectral data of Chinese cabbage plants were analyzed by principal component analysis (PCA), partial least square discriminant analysis (PLS-DA), and hierarchical clustering analysis (HCA). The hierarchical dendrograms based on PLS-DA from two of three cross combinations showed that paternal, maternal, and their progeny $F_1$ lines samples were perfectly separated into three branches in breeding line dependent manner. However, a cross combination failed to fully discriminate them into three branches. Thus, hierarchical dendrograms based on PLS-DA of FT-IR spectral data of Chinese cabbage breeding lines could be used to represent the most probable chemotaxonomical relationship among maternal, paternal, and $F_1$ plants. Furthermore, these metabolic discrimination systems could be applied for rapid selection and classification of useful Chinese cabbage cultivars.

Synthesis, Characterization and Photocatalytic Activity of Reduced Graphene Oxide-Ce/ZnO Composites

  • Zhang, Wenjun;Zhao, Jinfeng;Zou, Xuefeng
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.127-134
    • /
    • 2016
  • A series of Ce-doped ZnO (Ce/ZnO) nanostructures were fabricated using the co-precipitation method, then a simply nontoxic hydrothermal approach was proposed for preparation of reduced graphene oxide (rGO)-Ce/ZnO composites. The synthesized composites were investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), photoluminescence spectroscopy (PL), electrochemical impedance spectroscopy (EIS), UV-vis diffuse reflectance spectroscopy (DRS) techniques and Raman pattern. The as-synthesized rGO-Ce/ZnO composites showed high photodecomposition efficiency in comparison with the rGO-ZnO, Ce/ZnO, pure ZnO under UV, visible-light and sunlight irradiation. The degradation of methylene blue (MB) (10 mg/L, 100ml) by 95.8% within 60 min by using rGO-2 (10 mg) under sunlight irradiation was observed. The repeated use of the rGO-2 was investigated, and the results showed almost no decay in the catalytic activity.

Synthesis, characterization, and toxicity of multi-walled carbon nanotubes functionalized with 4-hydroxyquinazoline

  • Tahermansouri, Hasan;Mirosanloo, Atieh;Keshel, Saeed Heidari;Gardaneh, Mossa
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • The attachment of 2-aminobenzamide to carboxylated multi-wall carbon nanotubes (MWCNTs)-COOH was achieved through the formation of amide bonds. Then, the functionalized MWCNTs, MWCNT-amide, were treated by phosphoryl chloride to produce MWCNT-quin. The products were characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, thermogravimetric analysis, derivative thermogravimetric, steady-state fluorescence spectroscopy, and solubility testing. MWCNT-quin showed photo-electronic properties, which is due to the attachment of the 4-hydroxyquinazoline groups to them as proved by steady-state fluorescence spectroscopy. This suggests intramolecular interactions between the tubes and the attached 4-hydroxyquinazoline. The toxicity of the samples was evaluated in human embryonic kidney HEK293 and human breast cancer SKBR3 cell lines, and the viable cell numbers were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) after the cells were cultured for 24 h. Cellular investigations showed that the modified MWCNTs, particularly MWCNT-quin, have considerably significant toxic impact on SKBR3 as compared to HEK293 at the concentration of 5 µg/mL.

SPATIO-SPECTRAL MAXIMUM ENTROPY METHOD: II. SOLAR MICROWAVE IMAGING SPECTROSCOPY

  • Bong, Su-Chan;Lee, Jeong-Woo;Gary Dale E.;Yun Hong-Sik;Chae Jong-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.445-462
    • /
    • 2005
  • In a companion paper, we have presented so-called Spatio-Spectral Maximum Entropy Method (SSMEM) particularly designed for Fourier-Transform imaging over a wide spectral range. The SSMEM allows simultaneous acquisition of both spectral and spatial information and we consider it most suitable for imaging spectroscopy of solar microwave emission. In this paper, we run the SSMEM for a realistic model of solar microwave radiation and a model array resembling the Owens Valley Solar Array in order to identify and resolve possible issues in the application of the SSMEM to solar microwave imaging spectroscopy. We mainly concern ourselves with issues as to how the frequency dependent noise in the data and frequency-dependent variations of source size and background flux will affect the result of imaging spectroscopy under the SSMEM. We also test the capability of the SSMEM against other conventional techniques, CLEAN and MEM.

Exploration of structural, thermal and spectroscopic properties of self-activated sulfate Eu2(SO4)3 with isolated SO4 groups

  • Denisenko, Yu.G.;Aleksandrovsky, A.S.;Atuchin, V.V.;Krylov, A.S.;Molokeev, M.S.;Oreshonkov, A.S.;Shestakov, N.P.;Andreev, O.V.
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.109-116
    • /
    • 2018
  • $Eu_2(SO_4)_3$ was synthesized by chemical precipitation method and the crystal structure was determined by Rietveld analysis. The compound crystallizes in monoclinic space group C2/c. In the air environment, $Eu_2(SO_4)_3$ is stable up to $670^{\circ}C$. The sample of $Eu_2(SO_4)_3$ was examined by Raman, Fourier-transform infrared absorption and luminescence spectroscopy methods. The low site symmetry of $SO_4$ tetrahedra results in the appearance of the IR inactive ${\nu}_1$ mode around $1000cm^{-1}$ and ${\nu}_2$ modes below $500cm^{-1}$. The band intensities redistribution in the luminescent spectra of $Eu^{3+}$ ions is analyzed in terms of the peculiarities of its local environment.