Browse > Article
http://dx.doi.org/10.14478/ace.2022.1082

Influence of Urea Precursor on the Electrochemical Properties of Ni-Co-based Metal Organic Framework Electrodes for Supercapacitors  

Jung, Ye Seul (School of Chemical Engineering, Pusan National University)
Jung, Yongju (Department of Applied Chemical Engineering, Korea University of Technology and Education)
Kim, Seok (School of Chemical Engineering, Pusan National University)
Publication Information
Applied Chemistry for Engineering / v.33, no.5, 2022 , pp. 523-531 More about this Journal
Abstract
A NiCo-metal organic framework (MOF) electrode, prepared using urea as a surfactant, was synthesized using a one-pot hydrothermal method. The addition of urea to the NiCo-MOF creates interstitial voids and an ultra-thin nanostructure in the NiCo-MOF, which improves its charge transfer performance. We obtained the optimal metal to surfactant ratio to achieve the best specific capacitance. The NiCo-MOF was employed as the working electrode material in a three-electrode system. Field emission scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy were employed to characterize the microstructures and morphologies of the composites. Cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy curves were employed to quantify the electrochemical properties of the electrodes in a 6 M KOH electrolyte.
Keywords
Metal organic frameworks; Surfactant; NiCo-MOF; Electrochemical analysis; Supercapacitor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Han, X. Ou, Z. Deng, Y. Song, C. Tian, H. Deng, Y. J. Xu, and Z. Lin, Nickel metal-organic framework monolayers for photoreduction of diluted CO2: metal-node-dependent activity and selectivity, Angew. Chem. Int. Ed., 57, 16811-16815 (2018).   DOI
2 C. S. Lee, J. Moon, J. T. Park, and J. H. Kim, Engineering, Highly interconnected nanorods and nanosheets based on a hierarchically layered metal-organic framework for a flexible, high-performance energy storage device, ACS Sustain. Chem. Eng., 8, 3773-3785 (2020).   DOI
3 J. Xiao and S. Yang, Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2 O4 spinel for pseudocapacitors, RSC Adv., 1, 588-595 (2011).   DOI
4 H. C. Chen, S. Jiang, B. Xu, C. Huang, Y. Hu, Y. Qin, M. He, and H. J. Cao, Sea-urchin-like nickel-cobalt phosphide/phosphate composites as advanced battery materials for hybrid supercapacitors, J. Mater. Chem. A, 7, 6241-6249 (2019).   DOI
5 A. Eftekhari, The mechanism of ultrafast supercapacitors, J. Mater. Chem. A 6, 2866-2876 (2018).   DOI
6 Z. Xiao, Y. Mei, S. Yuan, H. Mei, B. Xu, Y. Bao, L. Fan, W. Kang, F. Dai, R. Wang, L. Wang, S. Hu, D. Sun, and H-C. Zhou, Controlled hydrolysis of metal-organic frameworks: hierarchical Ni/Co-layered double hydroxide microspheres for high-performance supercapacitors, ACS Nano, 13, 7024-7030 (2019).   DOI
7 C. Zhang, T. Kuila, N. H. Kim, S. H. Lee, and J. H. Lee, Facile preparation of flower-like NiCo2O4/three dimensional graphene foam hybrid for high performance supercapacitor electrodes, Carbon, 89, 328-339 (2015).   DOI
8 S. G. Kandalkar, H.-M. Lee, S. H. Seo, K. Lee, and C.-K. Kim, Cobalt-nickel composite films synthesized by chemical bath deposition method as an electrode material for supercapacitors, J. Mater. Sci., 46, 2977-2981 (2011).   DOI
9 X. Gong, J. Cheng, F. Liu, L. Zhang, and X. Zhang, Nickel-cobalt hydroxide microspheres electrodepositioned on nickel cobaltite nanowires grown on Ni foam for high-performance pseudocapacitors, J. Power Sources, 267, 610-616 (2014).   DOI
10 R. Waghmode, N. Maile, D. Lee, and A. P. Torane, Chemical bath synthesis of NiCo2O4 nanoflowers with nanorods like thin film for flexible supercapacitor application-effect of urea concentration on structural conversion, Electrochim. Acta, 350, 136413 (2020).   DOI
11 C. Qu, L. Zhang, W. Meng, Z. Liang, B. Zhu, D. Dang, S. Dai, B. Zhao, H. Tabassum, S. Gao, H. Zhang, W. Guo, R. Zhao, X. H, M. Liu, and R. Zou, MOF-derived α-NiS nanorods on graphene as an electrode for high-energy-density supercapacitors, J. Mater. Chem. A, 6, 4003-4012 (2018).   DOI
12 M. Shakeel, B. Li, M. Arif, G. Yasin, W. Rehman, A. U. Khan, S. Khan, A. Khan, and J. Ali, Controlled Synthesis of highly proficient and durable hollow hierarchical heterostructured (Ag-AgBr/HHST): A UV and Visible light active photocatalyst in degradation of organic pollutants, Appl. Catal. B, 227, 433-445 (2018).   DOI
13 P. Li, F.-F. Cheng, W.-W. Xiong, and Q. Zhang, New synthetic strategies to prepare metal-organic frameworks, Inorg. Chem. Front., 5, 2693-2708 (2018).   DOI
14 J. Zhao, X. Liu, Y. Wu, D.-S. Li, and Q. Zhang, Surfactants as promising media in the field of metal-organic frameworks, Coord. Chem. Rev., 391, 30-43 (2019).   DOI
15 J. Yang, Z. Ma, W. Gao, and M. Wei, Layered structural co-based MOF with conductive network frames as a new supercapacitor electrode, Chem. Eur. J., 23, 631-636 (2017).   DOI
16 Y. Liu, Y. He, E. Vargun, T. Plachy, P. Saha, and Q. Cheng, 3D porous Ti3C2 MXene/NiCo-MOF composites for enhanced lithium storage, Nanomaterials, 10, 695 (2020).   DOI
17 C. S. Lee, J. M. Lim, J. T. Park, and J. H. Kim, Direct growth of highly organized, 2D ultra-thin nano-accordion Ni-MOF@ NiS2@ C core-shell for high performance energy storage device, Chem. Eng. J., 406, 126810 (2021).   DOI
18 X. Sun, G. Wang, H. Sun, F. Lu, M. Yu, and J. Lian, Morphology controlled high performance supercapacitor behaviour of the Ni-Co binary hydroxide system, J. Power Sources, 238, 150-156 (2013).   DOI
19 R. B. Waghmode, H. S. Jadhav, K. G. Kanade, and A. P. Torane, Morphology-controlled synthesis of NiCo2O4 nanoflowers on stainless steel substrates as high-performance supercapacitors, Mater. Sci. Energy Technol., 2, 556-564 (2019).
20 B. Wang, Q. Liu, Z. Qian, X. Zhang, J. Wang, Z. Li, H. Yan, Z. Gao, F. Zhao, and L. Liu, Two steps in situ structure fabrication of Ni-Al layered double hydroxide on Ni foam and its electrochemical performance for supercapacitors, J. Power Sources, 246, 747-753 (2014).   DOI
21 M. Arif, G. Yasin, M. Shakeel, X. Fang, R. Gao, S. Ji, and D. Yan, Coupling of bifunctional CoMn-layered double hydroxide@graphitic C3N4 nanohybrids towards efficient photoelectrochemical overall water splitting, Chem. Asian J., 13, 1045-1052 (2018).   DOI
22 D. P. Dubal, O. Ayyad, V. Ruiz, and P. Gomez-Romero, Hybrid energy storage: The merging of battery and supercapacitor chemistries, Chem. Soc. Rev., 44, 1777-1790 (2015).   DOI
23 B. Kang and G. Ceder, Battery materials for ultrafast charging and discharging, Nature, 458, 190-193 (2009).   DOI
24 G. Zhou, Graphene-pure sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries, Design, Fabrication and Electrochemical Performance of Nanostructured Carbon Based Materials for High-Energy Lithium-Sulfur Batteries, Springer, Singapore, 75-94 (2017).
25 D. P. Dubal, N. R. Chodankar and S. Qiao, Tungsten nitride nanodots embedded phosphorous modified carbon fabric as flexible and robust electrode for asymmetric pseudocapacitor, Small, 15, 1804104 (2019).   DOI
26 F.-S. Ke, Y.-S. Wu and H. Deng, Metal-organic frameworks for lithium ion batteries and supercapacitors, J. Solid State Chem., 223, 109-121 (2015).   DOI
27 S. Bi, H. Banda, M. Chen, L. Niu, M. Chen, T. Wu, J. Wang, R. Wang, J. Feng, T. Chen, M. Dinca, A. A. Kornyshev and G. Feng, Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes, Nat. Mater., 19, 552-558 (2020).   DOI
28 Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, and H. J. J. Fan, Transition metal carbides and nitrides in energy storage and conversion, Adv. Sci., 3, 1500286 (2016).   DOI
29 J. B, Goodenough, Electrochemical energy storage in a sustainable modern society, Energy Environ. Sci., 7, 14-18 (2014).   DOI
30 X. Zhang, F. Yang, H. Chen, K. Wang, J. Chen, Y. Wang and S. Song, In Situ Growth of 2D Ultrathin NiCo2O4 Nanosheet Arrays on Ni Foam for High Performance and Flexible Solid-State Supercapacitors, Small, 16, 2004188 (2020).   DOI
31 J. Qi, Y. Yan, Y. Cai, J. Cao, and J. Feng, Nanoarchitectured Design of Vertical-Standing Arrays for Supercapacitors: Progress, Challenges, and Perspectives, Adv. Funct. Mater., 31, 2006030 (2021).   DOI
32 W. Wang, X. Xu, W. Zhou and Z. Shao, Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting, Adv. Sci., 4, 1600371 (2017).   DOI
33 P. Silva, S. M. F. Vilela, J. P. Tome, and F. A. Almeida Paz, Multifunctional metal-organic frameworks: From academia to industrial applications, Chem. Soc. Rev., 44, 6774-6803 (2015).   DOI
34 L. Shen, Q. Che, H. Li, and X. Zhang, Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage, Adv. Funct. Mater., 24, 2630-2637 (2014).   DOI
35 Y. Tang, Y. Liu, S. Yu, W. Guo, S. Mu, H. Wang, Y. Zhao, L. Hou, Y. Fan, and F. Gao, Template-free hydrothermal synthesis of nickel cobalt hydroxide nanoflowers with high performance for asymmetric supercapacitor, Electrochim. Acta, 161, 279-289 (2015).   DOI
36 C. Wang, J. Xu, M. F. Yuen, J. Zhang, Y. Li, X. Chen, and W. Zhang, Hierarchical composite electrodes of nickel oxide nanoflake 3D graphene for high-performance pseudocapacitors, Adv. Funct. Mater., 24, 6372-6380 (2014).   DOI
37 T. Y. Wei, C. H. Chen, H. C. Chien, S. Y. Lu, and C. C. Hu, A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process, Adv. Mater., 22, 347-351 (2010).   DOI
38 W. Zhao, Y. Zheng, L. Cui, D. Jia, D. Wei, R. Zheng, C. Barrow, W. Yang, and J. Liu, MOF derived Ni-Co-S nanosheets on electrochemically activated carbon cloth via an etching/ion exchange method for wearable hybrid supercapacitors, Chem. Eng. J., 371, 461-469 (2019).   DOI
39 Z.-L. Huang, M. Drillon, N. Masciocchi, A. Sironi, J.-T. Zhao, P. Rabu, and P. Panissod, Ab-initio XRPD crystal structure and giant hysteretic effect (H c= 5.9 T) of a new hybrid terephthalate-based cobalt (II) magnet, Chem. Mater., 12, 2805-2812 (2000).   DOI