Browse > Article
http://dx.doi.org/10.5714/CL.2016.17.1.045

Synthesis, characterization, and toxicity of multi-walled carbon nanotubes functionalized with 4-hydroxyquinazoline  

Tahermansouri, Hasan (Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University)
Mirosanloo, Atieh (Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University)
Keshel, Saeed Heidari (Stem Cell Preparation Unit, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences)
Gardaneh, Mossa (National Institute of Genetic Engineering and Biotechnology (NIGEB))
Publication Information
Carbon letters / v.17, no.1, 2016 , pp. 45-52 More about this Journal
Abstract
The attachment of 2-aminobenzamide to carboxylated multi-wall carbon nanotubes (MWCNTs)-COOH was achieved through the formation of amide bonds. Then, the functionalized MWCNTs, MWCNT-amide, were treated by phosphoryl chloride to produce MWCNT-quin. The products were characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, thermogravimetric analysis, derivative thermogravimetric, steady-state fluorescence spectroscopy, and solubility testing. MWCNT-quin showed photo-electronic properties, which is due to the attachment of the 4-hydroxyquinazoline groups to them as proved by steady-state fluorescence spectroscopy. This suggests intramolecular interactions between the tubes and the attached 4-hydroxyquinazoline. The toxicity of the samples was evaluated in human embryonic kidney HEK293 and human breast cancer SKBR3 cell lines, and the viable cell numbers were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) after the cells were cultured for 24 h. Cellular investigations showed that the modified MWCNTs, particularly MWCNT-quin, have considerably significant toxic impact on SKBR3 as compared to HEK293 at the concentration of 5 µg/mL.
Keywords
carbon nanotube; functionalization; MTT; 4-hydroxyquinazoline; toxicity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ibrahim KS. Carbon nanotubes-properties and applications: a review. Carbon Lett, 14, 131 (2013). http://dx.doi.org/10.5714/CL.2013.14.3.131.   DOI
2 Tahermansouri H, Dehghan Z, Kiani F. Phenol adsorption from aqueous solutions by functionalized multiwalled carbon nanotubes with a pyrazoline derivative in the presence of ultrasound. RSC Adv, 5, 44263 (2015). http://dx.doi.org/10.1039/c5ra02800k.   DOI
3 Tahermansouri H, Ahi RM, Kiani F. Kinetic, equilibrium and isotherm studies of cadmium removal from aqueous solutions by oxidized multi-walled carbon nanotubes and the functionalized ones with thiosemicarbazide and their toxicity investigations: a comparison. J Chin Chem Soc, 61, 1188 (2014). http://dx.doi.org/10.1002/jccs.201400197.   DOI
4 Hermas AA, Al-Juaid SS, Al-Thabaiti SA, Qusti AH, Abdel Salam M. In situ electropolymerization of conducting polypyrrole/carbon nanotubes composites on stainless steel: role of carbon nanotubes types. Prog Org Coat, 75, 404 (2012). http://dx.doi.org/10.1016/j. porgcoat.2012.07.006.   DOI
5 Wang L, Shi J, Zhang H, Li H, Gao Y, Wang Z, Wang H, Li L, Zhang C, Chen C, Zhang Z, Zhang Y. Synergistic anticancer effect of RNAi and photothermal therapy mediated by functionalized single-walled carbon nanotubes. Biomaterials, 34, 262 (2013). http://dx.doi.org/10.1016/j.biomaterials.2012.09.037.   DOI
6 Meng L, Zhang X, Lu Q, Fei Z, Dyson PJ. Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials, 33, 1689 (2012). http://dx.doi.org/10.1016/j.biomaterials.2011.11.004.   DOI
7 Ren Y, Pastorin G. Incorporation of hexamethylmelamine inside capped carbon nanotubes. Adv Mater, 20, 2031 (2008). http://dx.doi.org/10.1002/adma.200702292.   DOI
8 Guo Y, Shi D, Cho H, Dong Z, Kulkarni A, Pauletti GM, Wang W, Lian J, Liu W, Ren L, Zhang Q, Liu G, Huth C, Wang L, Ewing RC. In vivo imaging and drug storage by quantum-dot-conjugated carbon nanotubes. Adv Funct Mater, 18, 2489 (2008). http://dx.doi.org/10.1002/adfm.200800406.   DOI
9 Pastorin G, Wu W, Wieckowski S, Briand JP, Kostarelos K, Prato M, Bianco A. Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem Commun, (11), 1182 (2006). http://dx.doi.org/10.1039/B516309A.   DOI
10 Singh P, Ménard-Moyon C, Battigelli A, Toma FM, Raya J, Kumar J, Nidamanuri N, Verma S, Bianco A. Double functionalization of carbon nanotubes with purine and pyrimidine derivatives. Chem Asian J, 8, 1472 (2013). http://dx.doi.org/10.1002/asia.201300116.   DOI
11 Tahermansouri H, Biazar E. Functionalization of carboxylated multi-wall carbon nanotubes with 3,5-diphenyl pyrazole and an investigation of their toxicity. New Carbon Mater, 28, 199 (2013). http://dx.doi.org/10.1016/S1872-5805(13)60077-3.   DOI
12 Tahermansouri H, Ghobadinejad H. Functionalization of short multi-walled carbon nanotubes with creatinine and aromatic aldehydes via microwave and thermal methods and their influence on the MKN45 and MCF7 cancer cells. C R Chim, 16, 838 (2013). http://dx.doi.org/10.1016/j.crci.2013.04.004.   DOI
13 Yang Y, Qiu S, Xie X, Wang X, Li RKY. A facile, green, and tunable method to functionalize carbon nanotubes with water-soluble azo initiators by one-step free radical addition. Appl Surf Sci, 256, 3286 (2010). http://dx.doi.org/10.1016/j.apsusc.2009.12.020.   DOI
14 Tahermansouri H, Azadfar M, Keshel SH. Functionalization and toxicity effect of multi-walled carbon nanotubes with urea derivatives via microwave irradiation. Fullerenes Nanotubes Carbon Nanostruct, 21, 568 (2013). http://dx.doi.org/10.1080/1536383X.2011.643427.   DOI
15 Tahermansouri H, Aryanfar Y, Biazar E. Synthesis, characterization, and the influence of functionalized multi-walled carbon nanotubes with creatinine and 2-aminobenzophenone on the gastric cancer cells. Bull Korean Chem Soc, 34, 149 (2013). http://dx.doi.org/10.5012/bkcs.2013.34.1.149.   DOI
16 Tahermansouri H, Mirosanloo A. One-pot and three-component functionalization of short multi-walled carbon nanotubes with isatoic anhydride and benzyl amine and their effect on the MKN-45 and MCF7 cancer cells. Fullerenes Nanotubes Carbon Nanostruct, 23, 500 (2015). http://dx.doi.org/10.1080/1536383X.2013.868440.   DOI
17 Tahermansouri H, Abedi E. One-pot functionalization of short carboxyl multi-walled carbon nanotubes with ninhydrin and thiourea via microwave and thermal methods and their effect on MKN-45 and MCF7 cancer cells. Fullerenes Nanotubes Carbon Nanostruct, 22, 834 (2014). http://dx.doi.org/10.1080/1536383X.2012.742428.   DOI
18 Reddy ARN, Krishna DR, Himabindu V, Reddy YN. Single walled carbon nanotubes induce cytotoxicity and oxidative stress in HEK293 cells. Toxicol Environ Chem, 96, 931 (2014). http://dx.doi.org/10.1080/02772248.2014.993112.   DOI
19 Tahermansouri H, Abedi E, Heidari-Keshel S, Tarlani A. Influence of functionalised multiwalled carbon nanotubes with imidazole derivative and thiosemicarbazide on MKN45 and SW742 cancer cells. Mater Technol, 30, 223 (2015). http://dx.doi.org/10.1179/1753555714Y.0000000251.   DOI
20 Zhu Y, Li W. Cytotoxicity of carbon nanotubes. Sci China B Chem, 51, 1021 (2008). http://dx.doi.org/10.1007/s11426-008-0120-6.   DOI
21 Jain AK, Kumar Mehra N, Lodhi N, Dubey V, Mishra DK, Jain PK, Jain NK. Carbon nanotubes and their toxicity. Nanotoxicology, 1, 167 (2007). http://dx.doi.org/10.1080/17435390701639688.   DOI
22 Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small, 4, 26 (2008). http://dx.doi.org/10.1002/smll.200700595.   DOI
23 Shvedova AA, Kisin ER, Porter D, Schulte P, Kagan VE, Fadeel B, Castranova V. Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus? Pharmacol Ther, 121, 192 (2009). http://dx.doi.org/10.1016/j.pharmthera.2008.10.009.   DOI
24 Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ, Lyng FM. In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro, 21, 438 (2007). http://dx.doi.org/10.1016/j.tiv.2006.10.007.   DOI
25 Parhi AK, Zhang Y, Saionz KW, Pradhan P, Kaul M, Trivedi K, Pilch DS, LaVoie EJ. Antibacterial activity of quinoxalines, quinazolines, and 1,5-naphthyridines. Bioorg Med Chem Lett, 23, 4968 (2013). http://dx.doi.org/10.1016/j.bmcl.2013.06.048.   DOI
26 Tobe M, Isobe Y, Tomizawa H, Nagasaki T, Takahashi H, Fukazawa T, Hayashi H. Discovery of quinazolines as a novel structural class of potent inhibitors of NF-κB activation. Bioorg Med Chem, 11, 383 (2003). http://dx.doi.org/10.1016/S0968-0896(02)00440-6.   DOI
27 Chandregowda V, Kush AK, Reddy GC. Synthesis and in vitro antitumor activities of novel 4-anilinoquinazoline derivatives. Eur J Med Chem, 44, 3046 (2009). http://dx.doi.org/10.1016/j.ejmech.2008.07.023.   DOI
28 Jin Y, Li HY, Lin LP, Tan J, Ding J, Luo X, Long YQ. Synthesis and antitumor evaluation of novel 5-substituted-4-hydroxy-8-nitroquinazolines as EGFR signaling-targeted inhibitors. Bioorg Med Chem, 13, 5613 (2005). http://dx.doi.org/10.1016/j.bmc.2005.05.045.   DOI
29 Jones TR, Calvert AH, Jackman AL, Brown SJ, Jones M, Harrap KR. A potent antitumour quinazoline inhibitor of thymidylate synthetase: synthesis, biological properties and therapeutic results in mice. Eur J Cancer (1965), 17, 11 (1981). http://dx.doi.org/10.1016/0014-2964(81)90206-1.   DOI
30 Hiura H, Ebbesen TW, Tanigaki K, Takahashi H. Raman studies of carbon nanotubes. Chem Phys Lett, 202, 509 (1993). http://dx.doi.org/10.1016/0009-2614(93)90040-8.   DOI
31 Osswald S, Havel M, Gogotsi Y. Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J Raman Spectrosc, 38, 728 (2007). http://dx.doi.org/10.1002/jrs.1686.   DOI
32 Guldi DM, Rahman GMA, Jux N, Balbinot D, Tagmatarchis N, Prato M. Multiwalled carbon nanotubes in donor-acceptor nanohybrids-towards long-lived electron transfer products. Chem Commun, (15), 2038 (2005). http://dx.doi.org/10.1039/B418406H.   DOI
33 Baskaran D, Mays JW, Zhang XP, Bratcher MS. Carbon nanotubes with covalently linked porphyrin antennae: photoinduced electron transfer. J Am Chem Soc, 127, 6916 (2005). http://dx.doi.org/10.1021/ja0508222.   DOI
34 Raja PMV, Connolley J, Ganesan GP, Ci L, Ajayan PM, Nalamasu O, Thompson DM. Impact of carbon nanotube exposure, dosage and aggregation on smooth muscle cells. Toxicol Lett, 169, 51 (2007). http://dx.doi.org/10.1016/j.toxlet.2006.12.003.   DOI
35 Kirikova MN, Ivanov AS, Savilov SV, Lunin VV. Modification of multiwalled carbon nanotubes by carboxy groups and determination of the degree of functionalization. Russ Chem Bull, 57, 298 (2008). http://dx.doi.org/10.1007/s11172-008-0046-3.   DOI
36 Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand JP, Prato M, Muller S, Bianco A. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett, 6, 1522 (2006). http://dx.doi.org/10.1021/nl061160x.   DOI
37 Hussain MA, Kabir MA, Sood AK. On the cytotoxicity of carbon nanotubes. Curr Sci, 96, 664 (2009).
38 Kostarelos K. The long and short of carbon nanotube toxicity. Nat Biotechnol, 26, 774 (2008). http://dx.doi.org/10.1038/nbt0708-774.   DOI
39 Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett, 168, 121 (2007). http://dx.doi.org/10.1016/j.toxlet.2006.08.019.   DOI