• Title/Summary/Keyword: Four-Point Bending

Search Result 273, Processing Time 0.023 seconds

Flexural and Tensile Performance of Strain-Hardening Cement Composite with Synthetic Fibers (합성섬유를 사용한 변형경화형 시멘트 복합체의 휨 및 인장성능)

  • Kim, Sun-Woo;Lee, Min-Jung;Jang, Yong-Heon;Jang, Gwang-Soo;Song, Seon-Hwa;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.925-928
    • /
    • 2008
  • Fiber is an important ingredient in strain-hardening cementitious composite (SHCC), which can control fracture of cementitious composite by bridging action. The properties of reinforcing fiber, as tensile strength, aspect ratio and elastic modulus, have great effect on the fracture behavior of SHCC. To apply SHCC to structural member, SHCC must have economical efficiency and workability as well as own excellent tensile performance. For these purposes, four-point bending and direct tensile tests on SHCC with only hybrid synthetic fibers, total fiber volume fraction, $V_f$, is 1.5%, are carried out. The research emphasis is on the mechanical properties of SHCC made in Polyvinyl alcohol (PVA) and Polyethylene (PE) fibers, and how this affects the composite property, and ultimately its strain-hardening performance. Also, effect of hybrid type and water-cement ratio on the behavior of SHCC was evaluated in this paper.

  • PDF

Strengthening Performance of RC Beams Exposed to Freezing and Thawing Cycles after Strengthening in Shear with CFRP Sheet (CFRP 쉬트로 전단보강후 동결융해에 노출된 철근콘크리트 보의 보강성능)

  • Yun, Hyun-Do;Kim, Sun-Woo;Kim, Yun-Su;Lee, Min-Jung;Seo, Soo-Yeon;Choi, Ki-Bong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.161-164
    • /
    • 2008
  • In recent years, carbon fiber-reinforced polymer (CFRP) has been widely used for repairing and/or strengthening structural elements in concrete. Not enough test data, however, are available to predict the long-term performance of the repaired and improved structures exposed to weathering. The objective of this research is to study the effect of freeze-thaw cycling on the behavior of reinforced concrete (RC) beams strengthened in shear with carbon fiber sheet. Six small-scale RC beams (100mm${\times]$100mm${\times]$400mm) were strengthened with CFRP in shear, subjected to up to 400 cycles freeze-thawing from -17${\sim}4^{\circ}C$, and tested to failure in four-point bending. Test result, there was no significant damage to carbon fiber sheet strengthened concrete beams had been suffered 30 cycles of freeze-thawing, and more over 60 cycles of freezing-thawing brought about a reduction in resistance of only 25% of the initial level.

  • PDF

A Study of Bonding Strength of Repaired Resin Denture Base by Artificial Saliva Absorption (레진의치상 수리 시 인공타액 흡수도에 따른 결합강도 연구)

  • Kang, Myung-Ho;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.25-35
    • /
    • 2011
  • Purpose: There are some advantages of the acrylic resin denture base ; appropriate strength, volume safety, simple processing apparatus, and low cost. But, it have a weakness for fracture by intense pressure or shock. However, the repairs for resin denture base are possible using various materials and techniques. There is a few studies in repairs for resin denture base, but not clinical researches. And there is no studies in absorbed saliva into the region of fracture and bond strength. This study is to observe re-bond strength of resin denture base after repairing under saliva absorption. Methods: The samples were made of heat curing resin and the rectangular parallelepiped specimens which were 50mm long, 10mm wide and 3mm high. The four different groups immersed in the artificial saliva for 2 weeks were prepared, 1) no repaired control samples, 2) immediately repaired samples, 3) repaired samples after 1 day dry, and 4) repaired samples after 3 days dry. The prepared samples were repaired by two different curing materials, self curing resin and heat curing resin method. Each groups composed of 10 specimens were experimented with the three point bending tests for bonding strength measuring Results: There were under condition absorbed in the artificial saliva and repaired by self curing resin method, repaired specimens after 1 day and 3 days dry groups had higher values of bonding strengths than control group, and bonding strengths of immediately repaired samples were similar to those of control samples (p<0.05). There were under condition immersed in the artificial saliva and repaired by heat curing resin method, immediately repaired samples showed similar values to bonding strengths of control groups, and repaired samples after 1 day and 3 days dry groups were lower than those of control group (p>0.05). Conclusion: In this study, the repairs for resin denture base were remarkably high values of bonding strengths than those of the past, and showed that have stable bonding strengths independent of saliva absorption of denture base, so present repairs for resin denture base can be performed, regardless of saliva conditions.

Monitoring of a CFRP-Stiffened Panel Manufactured by VaRTM Using Fiber-Optic Sensors

  • Takeda, Shin-Ichi;Mizutani, Tadahito;Nishi, Takafumi;Uota, Naoki;Hirano, Yoshiyasu;Iwahori, Yutaka;Nagao, Yosuke;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • v.17 no.2
    • /
    • pp.125-137
    • /
    • 2008
  • FBG (Fiber Bragg Grating) sensors and optical fibers were embedded into CFRP dry preforms before resin impregnation in VaRTM (Vacuum-assisted Resin Transfer Molding). The embedding location was the interface between the skin and the stringer in a CFRP-stiffened panel. The reflection spectra of the FBG sensors monitored the strain and temperature changes during all the molding processes. The internal residual strains of the CFRP panel could be evaluated during both the curing time and the post-curing time. The temperature changes indicated the differences between the dry preform and the outside of the vacuum bagging. After the molding, four-point bending was applied to the panel for the verification of its structural integrity and the sensor capabilities. The optical fibers were then used for the newly-developed PPP-BOTDA (Pulse-PrePump Brillouin Optical Time Domain Analysis) system. The long-range distributed strain and temperature can be measured by this system, whose spatial resolution is 100 mm. The strain changes from the FBGs and the PPP-BOTDA agreed well with those from the conventional strain gages and FE analysis in the CFRP panel. Therefore, the fiber-optic sensors and its system were very effective for the evaluation of the VaRTM composite structures.

Flexural Behavior of RC Beams Strengthened with CFRP Plate Using Multi-directional Channel-type Anchorage System (다방향 채널형 단부정착장치를 이용한 CFRP판 보강 RC 보의 휨거동)

  • Hong, Ki Nam;Han, Sang Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.171-180
    • /
    • 2008
  • The aim of this paper is to clarify the structural performance of RC beams strengthened with Carbon Fibre Reinforced Polymer(CFRP) plates using channel-type anchorage system. Twelve RC beams were specifically designed without and with a channel-type anchorage system, which was carefully detailed to enhance the benefits of the strengthening plates. All the twelve beams were identical in terms of their geometry but varied in their internal reinforcement, concrete strength. All the beams were tested under four point bending and extensively instrumented to monitor strains, cracking, load capacity and failure modes. The structural response of all the twelve beams is then critically analyzed in terms of deformability, strength and failure processes. It is shown that with a channel-type anchorage system, a brittle debonding failure of a strengthened beam can be transformed to an almost ductile failure with well-defined enhancement of structural performance in terms of both deformation and strength.

성막직전 기판 열처리가 롤투롤 스퍼터를 이용하여 성장시킨 터치 패널용 ITO 투명 전극의 특성 미치는 효과 연구

  • Kim, Dong-Ju;Kim, Bong-Seok;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.416-416
    • /
    • 2010
  • 본 연구에서는 저가격, 대면적화를 위한 롤투롤 스퍼터를 설계&개발하고, 성막직전 PET 기판의 열처리 유무를 통한 ITO 박막을 성막 시킨 저항막 방식의 터치 패널용 투명 전극에 대하여 전기적, 광학적, 구조적, 표면적 특성을 분석하였다. 롤투롤 스퍼터는 degassing챔버와 스퍼터 챔버가 한 시스템에 구성되었고, Degassing 챔버는 좌우측의 Rewinder/Unwinder 롤러에 의해 감고 풀어지는 PET기판의 수분 및 가스를 중앙부에 위치한 히터를 통해 제거하며, 수분 제거 후 스퍼터 챔버로 옮겨진 1250 mm폭의 PET기판을 Unwinder/Rewinder 롤러에 장착하며, Unwinder 롤러로부터 풀려진 PET 기판은 guide 롤러를 거쳐 cooling drum과의 물리적 접촉에 의해 PET 기판의 냉각이 일어나게 된다. ITO 캐소드 전에 장착된 할로겐 히터 상부로 기판이 지나가면서 열처리가 진행되고 열처리 후 두 개의 ITO 캐소드 상부를 지나면서 연속적으로 ITO 박막이 PET 기판에 성막 되게 된다. ITO 박막의 주요 성막 변수인 DC Power, Ar/$O_2$ 가스 유량비, 기판의 속도는 최적으로 고정하고, 성막 직전 기판의 열처리에 유무에 따른 ITO박막의 필름을 각각 고온 챔버에서 $140^{\circ}C{\times}90min$ 동안 열처리를 통한 내열성 테스트를 진행하여 ITO 필름의 특성 향상을 비교 분석하였다. 분석을 위해 전기적 특성은 four-point probe로 측정했고, 투과도는 Nippon Denshoku사(社)의 COH-300A를 이용해 가시광(550nm)에서 분석했고, FE-SEM으로 ITO박막 의 표면 상태를 분석하였다. 또한 Bending Tester(Z-100)를 이용하여 기계적 안정성을 분석하였다. 성막직전 PET 기판의 열처리를 하지 않은 ITO박막은 고온의 챔버 에서 $140^{\circ}C{\times}90min$ 동안 내열성 테스트 후 면저항이 511($\omega/\Box$)에서 630($\omega/\Box$)으로 높아졌으나, 성막직전 열처리를 통한 ITO 박막인 경우에는 465($\omega/\Box$)에서 448($\omega/\Box$)로 안정화 되었고, 투과율은 성막직전 열처리를 통해 1%향상되어 89%를 보였고, 유연성 또한 보다 우수한 특성을 보였다. 표면 조도는 평균 0.416 nm의 낮은 값을 보였다. 이는 PET 기판의 degassing 공정 중 충분히 제거되지 않은 가스나 불순물을 성막직전 열처리 공정으로 충분히 제거하여 깨끗한 PET 기판 상에 ITO 박막을 성막시키고, 열처리시 기판에 주어진 열에너지에 의해 보다 밀도가 높은 ITO 박막이 성장했기 때문으로 사료 된다.

  • PDF

Effect of BOE Wet Etching on Interfacial Characteristics of Cu-Cu Pattern Direct Bonds for 3D-IC Integrations (3차원 소자 적층을 위한 BOE 습식 식각에 따른 Cu-Cu 패턴 접합 특성 평가)

  • Park, Jong-Myeong;Kim, Su-Hyeong;Kim, Sarah Eun-Kyung;Park, Young-Bae
    • Journal of Welding and Joining
    • /
    • v.30 no.3
    • /
    • pp.26-31
    • /
    • 2012
  • Three-dimensional integrated circuit (3D IC) technology has become increasingly important due to the demand for high system performance and functionality. We have evaluated the effect of Buffered oxide etch (BOE) on the interfacial bonding strength of Cu-Cu pattern direct bonding. X-ray photoelectron spectroscopy (XPS) analysis of Cu surface revealed that Cu surface oxide layer was partially removed by BOE 2min. Two 8-inch Cu pattern wafers were bonded at $400^{\circ}C$ via the thermo-compression method. The interfacial adhesion energy of Cu-Cu bonding was quantitatively measured by the four-point bending method. After BOE 2min wet etching, the measured interfacial adhesion energies of pattern density for 0.06, 0.09, and 0.23 were $4.52J/m^2$, $5.06J/m^2$ and $3.42J/m^2$, respectively, which were lower than $5J/m^2$. Therefore, the effective removal of Cu surface oxide is critical to have reliable bonding quality of Cu pattern direct bonds.

Behavior of steel and concrete composite beams with a newly puzzle shape of crestbond rib shear connector: an experimental study

  • Le, Van Phuoc Nhan;Bui, Duc Vinh;Chu, Thi Hai Vinh;Kim, In-Tae;Ahn, Jin-Hee;Dao, Duy Kien
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1001-1019
    • /
    • 2016
  • The connector is the most important part of a composite beam and promotes a composite action between a steel beam and concrete slab. This paper presents the experiment results for three large-scale beams with a newly puzzle shape of crestbond. The behavior of this connector in a composite beam was investigated, and the results were correlated with those obtained from push-out-test specimens. Four-point-bending load testing was carried out on steel-concrete composite beam models to consider the effects of the concrete strength, number of transverse rebars in the crestbond, and width of the concrete slab. Then, the deflection, ultimate load, and strains of the concrete, steel beam, and crestbond; the relative slip between the steel beam and the concrete slab at the end of the beams; and the failure mechanism were observed. The results showed that the general behavior of a steel-concrete composite beam using the newly puzzle shape of crestbond shear connectors was similar to that of a steel-concrete composite beam using conventional shear connectors. These newly puzzle shape of crestbond shear connectors can be used as shear connectors, and should be considered for application in composite bridges, which have a large number of steel beams.

An Alternative Simplified Approach in Solving for the Inelastic Buckling Strengths of Singly Symmetric Non-Compact Stepped I-Beams (일축대칭 비조밀 스텝 I형보의 비탄성 좌굴강도 산정을 위한 단순방법)

  • Alolod, Shane;Park, Jong Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.123-134
    • /
    • 2019
  • This paper proposed a new design equation for the inelastic lateral torsional buckling (LTB) of singly symmetric stepped I-beams with non-compact flange sections. The proposed equation was generated using a finite element program, ABAQUS, and a statistical program, MINITAB. The parameters used were the stepped beams parameters; ${\alpha}$, ${\beta}$, and ${\gamma}$ and the length-to-height ratio ($L_b/h$) of the beam. The proposed equation was further validated by means of experimental test, where beams were subjected to four-point bending and supported by roller and lateral braces near the end supports. In addition, finite element models were simulated using the same parameters used in the experimental test to verify the results of the test conducted. It was proved that LTB capacity calculated from the proposed equation is accurate and conservative in comparison with the yielded values from the FEM and actual test, making it a reliable and safe approach in calculating the buckling capacities of singly symmetric stepped beams with non-compact flange sections.

Experimental investigation on UHPC beams reinforced with GFRP and steel rebars and comparison with prediction equations

  • Parvin, Yousef Abbasi;Shaghaghi, Taleb Moradi;Pourbaba, Masoud;Mirrezaei, Seyyed Saeed;Zandi, Yousef
    • Advances in concrete construction
    • /
    • v.14 no.1
    • /
    • pp.45-55
    • /
    • 2022
  • In this article, the flexural and shear capacity of ultra-high-performance fiber-reinforced concrete beams (UHPFRC) using two kinds of rebars, including GFRP and steel rebars, are experimentally investigated. For this purpose, six UHPFRC beams (250 × 300 × 1650 mm) with three reinforcement ratios (ρ) of 0.64, 1.05, and 1.45 were constructed using 2% steel fibers by volume. Half of the specimens were made of UHPFRC reinforced with GFRP rebars, while the other half were reinforced with conventional steel rebars. All specimens were tested to failure in four-point bending. Both the load-deformation at mid-span and the failure pattern were studied. The results showed that utilizing GFRP bars increases the flexural strength of UHPFRC beams in comparison to those made of steel bars, but at the same time, it reduces the post-cracking strain hardening. Furthermore, by increasing the percentage of longitudinal bars, both the post-cracking strain hardening and load-bearing capacity increase. Comparing the experiment results with some of the available equations and provisions cited in the valid design codes reveals that some of the equations to predict the flexural strength of UHPFRC beams reinforced with conventional steel and GFRP bars are reasonably conservative, while Khalil and Tayfur model is un-conservative. This issue makes it essential to modify the presented equations in this research for predicting the flexural strength of UHPFRC beams using GFRP bars.