• Title/Summary/Keyword: Four wheel steering vehicle

Search Result 49, Processing Time 0.031 seconds

Fault Tolerant Control Strategy for Four Wheel Steer-by-Wire Systems (4륜 조향을 이용한 Steer-by-Wire 시스템의 고장 허용 제어 전략)

  • Seonghun Noh;Baek-soon Kwon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.2
    • /
    • pp.13-20
    • /
    • 2023
  • This paper presents a fault tolerant control strategy for Steer-by-Wire (SbW) systems. Among many problems to be solved before commercialization of SbW systems, maintaining reliability and fault tolerance in such systems are the most pressing issues. In most previous studies, dual steering motors are used to achieve actuation redundancy. However, relatively few studies have been conducted to introduce fault tolerant control strategies using rear wheel steering system. In this work, an actuator fault in front wheel steering is compensated by active rear wheel steering. The proposed fault tolerant control algorithm consists of disturbance observer and sliding mode control. The fault tolerant control performance of the proposed approach is validated via computer simulation studies with Carsim vehicle dynamics software and MATLAB/Simulink.

Development of the Dynamic Model and Control Logic for the Rear Wheel Steering in 4WS Vehicle (후륜 조향 동력학 모델 및 제어 로직 개발)

  • 장진희;김상현;한창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.39-51
    • /
    • 1996
  • In the turning maneuver of the vehicle, its motion is mainly dependent on the genuine steering characteristics in view of the directional stability for stable turning ability. The under steer vehicle has an ability to maintain its own directonal performance for unknown external disturbances to some extent. From a few years ago, in order to acquire the more enhanced handling performance, some types of four wheel steering vehicle were considered and constructed. And, various rear wheel control logics for external disturbances has not been suggested. For this reason, in this posed rear wheel control logic is based on the yaw rate feed back type and is slightly modified by an yaw rate tuning factor for more stable turning performance. And an external disturbance is defined as a motivation of the additional yaw rate in the center of gravity by an uncertain input. In this study, an external disturbance is applied to the vehicle as a form of the additional yawing moment. Finally, the proposed rear wheel control logic is tested on the multi-body analysis software(ADAMS). J-turn and double lane change test are performed for the validation of the control logic.

  • PDF

Effect of four-wheel steering system on vehicle handling characterisitcs (4륜 조향시스템이 차량의 주행역학적 특성에 미치는 영향)

  • 심정수;허승진;유영면
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.21-29
    • /
    • 1990
  • Equipments of passenger cars with modern technologies are gaining their importance. Related with such developments, the four-wheel steering system (4WS) was introduced recently to a few passenger cars in the market. The most important research goal on this new steering system is improvement of active safety, in other words, improvement of handling characteristics of vehicle stability and maneuverability. This paper presents a computer-based study about the effects of 4WS system on the vehicle handling characteristics. A simple bicycle model of 2 d.o.f. is used for the development of four wheel control algorithms of 4WS system, and the rear wheel control strategies are applied to a complex vehicle model of 16 d.o.f. for simulation of selected ISO-driving tests. The 4WS systems, which reduce the sideslip angle at the mass center of vehicle to almost zero, show much improved handling characteristics compared to that of the conventional 2WS system. These 4WS systems, however, result in vehicles with eigen-steer characteristics of extreme understeer behaviour.

  • PDF

A Model Reference Variable Structure Control based on a Neural Network System Identification for an Active Four Wheel Steering System

  • Kim, Hoyong;Park, Yong-Kuk;Lee, Jae-Kon;Lee, Dong-Ryul;Kim, Gi-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.142-155
    • /
    • 2000
  • A MIMO model reference control scheme incorporating the variable structure theory for a vehicle four wheel steering system(4WS) is proposed and evaluated for a class of continuous-time nonlinear dynamics with known or unknown uncertainties. The scheme employs an neural network to identify the plant systems, where the neural network estimates the nonlinear dynamics of the plant. By the Lyapunov direct method, the algorithm is proven to be globally stable, with tracking errors converging to the neighborhood of zero. The merits of this scheme is that the global system stability is guaranteed and it is not necessary to know the exact structure of the system. With the resulting identification model which contains the neural networks, it does not need higher degrees of freedom vehicle model than 3 degree of freedom model. Th proposed scheme is applied to the active four wheel system and shows the validity is used to investigate vehicle handing performances. In simulation of the J-turn maneuver, the reduction of yaw rate overshoot of a typical mid-size car improved by 30% compared to a two wheel steering system(2WS) case, resulting that the proposed scheme gives faster yaw rate response and smaller side angle than the 2WS case.

  • PDF

Stability Control of Four-Wheel Steering Vehicles (4WS 차량의 안정성 제어)

  • Ko, Young-Eun;Song, Chul-Ki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.127-136
    • /
    • 2008
  • Vehicle stability is a very important subject in vehicle design and control, because vehicle safety is closely dependent upon its dynamic stability. The control logic for four-wheel steering(4WS) systems, in which maintaining at least the specified stability region is the control objective, was constructed using the simplified vehicle model of 3 degree-of-freedoms. The improvement of vehicle stability was verified through computer simulations for the slalom and the double lane change maneuver using the multi-body dynamic model in MSC.ADAMS.

A Disctete Model Reference Control With a Neural Network System Ldentification for an Active Four Wheel Steering System

  • 김호용;최창환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.29-39
    • /
    • 1997
  • A discrete model reference control scheme for a vehicle four wheel steering system(4WS) is proposed and evaluated for a class of discrete time nonlinar dynamics. The schmen employs a neural network to identify the plan systems, wher the neural network estimates the nonlinear dynamics of the plant. The algorithm is proven to be globally stable, with tracking errors converging to the neighborhood of zero. The merits of this scheme is that the global system stability is guaranteed. Whith thd resulting identification model which contains the neural networks, the parameters of controller are adjusted. The proposed scheme is applied to the vehicle active four wheel system and shows the validity and effectiveness through simulation. The three-degree-of freedom vehicle handling model is used to investigate vehicle handing performances. In simulation of the J-turn maneuver, the yaw rate overshoot reduction of a typical mid-size car is improved by 30% compared to a two wheel steering system(2WS) case, resulting that the proposed scheme gives faster yaw rate response andl smaller side slip angle than the 2WS case.

  • PDF

INTEGRATED CONTROL SYSTEM DESIGN OF ACTIVE FRONT WHEEL STEERING AND FOUR WHEEL TORQUE TO IMPROVE VEHICLE HANDLING AND STABILITY

  • Wu, J.Y.;Tang, H.J.;Li, S.Y.;Zheng, S.B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.299-308
    • /
    • 2007
  • This study proposes a two-layer hierarchical control system that integrates active front wheel steering and four wheel braking torque control to improve vehicle handling performance and stability. The first layer is a robust model matching controller (R-MMC) based on linear matrix inequalities (LMIs), which optimizes an active front steering angle compensation and a desired yaw moment control, and calculates reference wheel slip for the target wheel according to the desired yaw moment. The second layer is a moving sliding mode controller (MSMC) that can track the reference wheel slip in a predetermined time by commanding proper braking torque on the target wheel to achieve the desired yaw moment. Since vehicle sideslip angle measurement is difficult to achieve in practice, a sliding mode observer (SMO) that requires only vehicle yaw rate as the measured input is also developed in this study. The performance and robustness of the SMO and the integrated control system are demonstrated through comprehensive computer simulations. Simulation results reveal the satisfactory tracking ability of the SMO, and the superior improved vehicle handling performance, stability and robustness of the integrated control vehicle.

A Study on the Optimum Velocity of a Four Wheel Steering Autonomous Robot (4륜조향 자율주행로봇의 최적속도에 관한 연구)

  • Kim, Mi-Ok;Lee, Jung-Han;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.86-92
    • /
    • 2009
  • A driver-vehicle model means the integrated dynamic model that is able to estimate the steering wheel angle from the driver's desired path based on the dynamic characteristics of the driver and vehicle. Autonomous driving robot for factory automation has individual four-wheels which are driven by electronic motors. In this paper, the dynamic characteristics of several four-wheel steering systems with the simultaneously steerable front and rear wheels are investigated and compared by means of the driver-vehicle model. A diver-vehicle model is proposed by using the PID control to velocity and trajectory of control autonomous driving robot. To determine the optimum speed of a autonomous driving robot, steady-state circle simulation is carried out with the ADAMS program and MATLAB control model.

Vehicle State Estimation Robust to Wheel Slip Using Extended Kalman Filter (휠 슬립에 강건한 확장칼만필터 기반 차량 상태 추정)

  • Myeonggeun, Jun;Ara, Jo;Kyongsu, Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.16-20
    • /
    • 2022
  • Accurate state estimation is important for autonomous driving. However, the estimation error increases in situations that a lot of longitudinal slip occurs. Therefore, this paper presents a vehicle state estimation method using an Extended Kalman Filter. The filter estimates the states of the host vehicle robust to wheel slip. It utilizes the measurements of the four-wheel rotational speeds, longitudinal acceleration, yaw-rate, and steering wheel angle. Nonlinear measurement model is represented by Ackermann Model. The main advantage of this approach is the accurate estimation of yaw rate due to the measurement of the steering wheel angle. The proposed algorithm is verified in scenarios of autonomous emergency braking (AEB), lane change (LC), lane keeping (LK) using an automated vehicle. The results show that the proposed algorithm guarantees accurate estimation in such scenarios.

A Study on Lateral Stability Enhancement of 4WS Vehicle with Active Front Wheel Steer System (능동전륜조향장치를 채택한 사륜조향차량의 횡방향 안정성 강화에 대한 연구)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.15-20
    • /
    • 2012
  • This study is to propose and develop an integrated dynamics control system to improve and enhance the lateral stability and handling performance. To achieve this target, we integrate an AFS and a 4WS systems with a fuzzy logic controller. The IDCS determines active additional steering angle of front wheel and controls the steering angle of rear wheel. The results show that the IDCS improves the lateral stability and controllability on dry asphalt and snow paved road when double lane change and step steering inputs are applied. Yaw rate of the IDCS vehicle tracks reference yaw rate very well and body slip angle is reduced about by 50%. Response time of the IDCS vehicle is also decreased.