• 제목/요약/키워드: Four Parameter Evaluation Method

검색결과 47건 처리시간 0.023초

특징 선택과 융합 방법을 이용한 음성 감정 인식 (Speech Emotion Recognition using Feature Selection and Fusion Method)

  • 김원구
    • 전기학회논문지
    • /
    • 제66권8호
    • /
    • pp.1265-1271
    • /
    • 2017
  • In this paper, the speech parameter fusion method is studied to improve the performance of the conventional emotion recognition system. For this purpose, the combination of the parameters that show the best performance by combining the cepstrum parameters and the various pitch parameters used in the conventional emotion recognition system are selected. Various pitch parameters were generated using numerical and statistical methods using pitch of speech. Performance evaluation was performed on the emotion recognition system using Gaussian mixture model(GMM) to select the pitch parameters that showed the best performance in combination with cepstrum parameters. As a parameter selection method, sequential feature selection method was used. In the experiment to distinguish the four emotions of normal, joy, sadness and angry, fifteen of the total 56 pitch parameters were selected and showed the best recognition performance when fused with cepstrum and delta cepstrum coefficients. This is a 48.9% reduction in the error of emotion recognition system using only pitch parameters.

Development and Comparative Study on Tire Models In the AutoDyn7 Program

  • Han, Dong-Hoon;Sohn, Jeong-Hyun;Kim, Kwang-Suk;Lee, Jong-Nyun;Yoo, Wan-Suk;Lee, Byun-Hoon;Choi, Jae-Weon
    • Journal of Mechanical Science and Technology
    • /
    • 제14권7호
    • /
    • pp.730-736
    • /
    • 2000
  • In this paper, several tire models (Magic formula, Carpet plot, VA tire, DADS tire and STI tire) are implemented and compared. Since the STI (System Technology Inc.) tire model in the AutoDyn7 program is in a good agreement to NADSdyna STI tire model and experiment, it is selected as a reference tire model for the comparison. To compare tire models, input parameters of each tire model are extracted from the STI tire model to preserve the same tire properties. Several simulations are carried out to compare performances of tire models, i. e., bump simulation, lane change simulation, and pulse steering simulation. The performances in vehicle maneuverability are also compared with the four parameter evaluation method.

  • PDF

Multi-Parameter Lamb Wave Tomography

  • Choi, Jae-Seung;Kline, Ronald A.
    • Journal of Mechanical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.1-10
    • /
    • 2000
  • This work shows that it is possible to obtain information about more than one parameter from acoustic field information. A variety of ultrasonic Lamb wave modes were utilized to reconstruct thickness and density of an isotropic plate. An image reconstruction of one parameter (thickness of a plate) was carried out for four cases, i.e., the lowest symmetrical and anti symmetrical modes, and the fastest symmetrical and anti symmetrical Lamb waves among multiple modes. For two parameter reconstructions (thickness and density), the image processing was performed using the lowest symmetrical and antisymmetrical modes simultaneously. In this work, a modified version of algebraic reconstruction technique (ART), which is a form of finite-series expansion method, was employed to reconstruct the ultrasonically computed tomographic images. Results from several sample geometries are presented.

  • PDF

압입법을 이용한 1Cr-1Mo-0.25V강의 열화도 평가에 관한 연구 (A study on the Evaluation of Material Degradation of 1Cr-1Mo-0.25V Steel using Ball Indentation Method)

  • 석창성;김정표;안하늘
    • 한국정밀공학회지
    • /
    • 제18권4호
    • /
    • pp.151-159
    • /
    • 2001
  • As huge energy transfer systems like a nuclear power plant, steam power plant and petrochemical plant are operated for a long time, mechanical properties are changed by degradation. The life time of the systems can be affected by the mechanical properties. BI(Ball Indentation) test has a potential to replace conventional fracture tests like a uniaxial tensile test, fracture toughness test, hardness test and so on. In this paper, we would like to present the ageing evaluation technique by the BI method. The four classes of the thermally aged 1Cr-!mo-0.25V specimens were prepared using an artificially accelerated aging method. Tensile tests, fracture toughness tests, hardness tests and BI tests were performed. The results of the BI tests were in good agreement with fracture characteristics by a standard fracture test method within 5%. The IDE(Indentation Deformation Energy) of a BI technique as a new parameter for evaluating a degradation was suggested and the new IDE parameter clearly depicts the degradation degree.

  • PDF

압입법을 이용한 재료 열화의 평가에 관한 연구 (A Study on the Evaluation of Material Degradation using Ball Indentation Method)

  • 김정표;석창성;안하늘
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.171-176
    • /
    • 2000
  • As huge energy transfer systems like a nuclear power plant, steam power plant and petrochemical plant are operated for a long time, mechanical properties are changed by degradation. The life time of the systems can be affected by the mechanical properties. BI(Ball Indentation) test has a potential to replace conventional fracture tests like a uniaxial tensile test, fracture toughness test, hardness test and so on. In this paper, we would like to present the aging evaluation technique by the BI method. The four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method. Tensile tests, fracture toughness tests, hardness tests and BI tests were performed. The results of the BI tests were in good agreement with fracture characteristics by a standard fracture test method. The IDE(Indentation Deformation Energy) of a BI technique as a new parameter for evaluating a degradation was suggested and the new IDE parameter clearly depicts the degradation degree.

  • PDF

Cubic normal distribution and its significance in structural reliability

  • Zhao, Yan-Gang;Lu, Zhao-Hui
    • Structural Engineering and Mechanics
    • /
    • 제28권3호
    • /
    • pp.263-280
    • /
    • 2008
  • Information on the distribution of the basic random variable is essential for the accurate analysis of structural reliability. The usual method for determining the distributions is to fit a candidate distribution to the histogram of available statistical data of the variable and perform approximate goodness-of-fit tests. Generally, such candidate distribution would have parameters that may be evaluated from the statistical moments of the statistical data. In the present paper, a cubic normal distribution, whose parameters are determined using the first four moments of available sample data, is investigated. A parameter table based on the first four moments, which simplifies parameter estimation, is given. The simplicity, generality, flexibility and advantages of this distribution in statistical data analysis and its significance in structural reliability evaluation are discussed. Numerical examples are presented to demonstrate these advantages.

초음파법을 이용한 1Cr-1Mo-0.25V강의 열화도 평가에 관한 연구 (A Study on the Evaluation of Material Degradation of 1Cr-1Mo-0.25V Steel using Ultrasonic Techniques)

  • 김정표;석창성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.78-83
    • /
    • 2001
  • It's required mechanical properties of in-service facilities to maintain safety operation in power plants as well as chemical plants. In this study the four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method at $630^{\circ}C$. Ultrasonic tests, tensile tests, $K_{IC}$ tests and hardness tests were performed in order to evaluate the degree of degradation of the material. The mechanical properties were decreased as degraded, but the attenuation coefficient and the harmonic generation level of a ultrasonic signal were increased. Expecially the nonlinear parameter of the signal is sensitive and will be a good parameter to evaluate the material degradation.

  • PDF

광학 현미경 영상 화질개선의 추세에 관한 체계적 고찰 (A Systematic Review of Trends for Image Quality Improvement in Light Microscopy)

  • 김규석;이영진
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권3호
    • /
    • pp.207-217
    • /
    • 2023
  • Image noise reduction algorithm performs important functions in light microscopy. This study aims to systematically review the research trend of types and performance evaluation methods of noise reduction algorithm in light microscopic images. A systematic literature search of three databases of publications from January 1985 to May 2020 was conducted; of the 139 publications reviewed, 16 were included in this study. For each research result, the subjects were categorized into four major frameworks-1. noise reduction method, 2. imaging technique, 3. imaging type, and 4. evaluation method-and analyzed. Since 2003, related studies have been conducted and published, and the number of papers has increased over the years and begun to decrease since 2016. The most commonly used method of noise reduction algorithm for light microscopy images was wavelet-transform-based technology, which was mostly applied in basic systems. In addition, research on the real experimental image was performed more actively than on the simulation condition, with the main case being to use the comparison parameter as an evaluation method. This systematic review is expected to be extremely useful in the future method of numerically analyzing the noise reduction efficiency of light microscopy images.

다중 재귀 최소 자승 추정 알고리즘 기반 모빌리티의 회전체 건전성 모니터링 방법 개발 (Development of a Method for Health Monitoring of Rotating Object for Mobility based on Multiple RLS Algorithm)

  • 라한별;이지웅;오광석
    • 자동차안전학회지
    • /
    • 제16권2호
    • /
    • pp.51-59
    • /
    • 2024
  • This study presents a method for health monitoring of rotating objects for mobility based on multiple recursive least squares(RLS) algorithms. The performance degradation of the rotating objects causes low handing / low driving performances and even fatal accidents. Therefore, health monitoring algorithm of rotating objects is one of the important technologies for mobility fail-safe and maintenance areas. In order for health monitoring of rotating objects, four recursive least squares algorithms with forgetting factor were designed in this study. The health monitoring algorithm proposed in this study consists of two steps such as uncertainty estimation and parameter changes estimation. In order to improve estimation accuracy, time delay function was applied to the estimated signals based on the first order differential equation and forgetting factors used for the RLS were reasonably tuned. The health monitoring algorithm was constructed in Matlab/Simulink environment and simulation-based performance evaluation was conducted using DC motor model. The evaluation results showed that the proposed algorithm estimates the actual parameter differences reasonably using velocity and current information.

Applicability of nonlinear ultrasonic technique to evaluation of thermally aged CF8M cast stainless steel

  • Kim, Jongbeom;Kim, Jin-Gyum;Kong, Byeongseo;Kim, Kyung-Mo;Jang, Changheui;Kang, Sung-Sik;Jhang, Kyung-Young
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.621-625
    • /
    • 2020
  • Cast austenitic stainless steel (CASS) is used for fabricating different components of the primary reactor coolant system of pressurized water reactors. However, the thermal embrittlement of CASS resulting from long-term operation causes structural safety problems. Ultrasonic testing for flaw detection has been used to assess the thermal embrittlement of CASS; however, the high scattering and attenuation of the ultrasonic wave propagating through CASS make it difficult to accurately quantify the flaw size. In this paper, we present a different approach for evaluating the thermal embrittlement of CASS by assessing changes in the material properties of CASS using a nonlinear ultrasonic technique, which is a potential nondestructive method. For the evaluation, we prepared CF8M specimens that were thermally aged under four different heating conditions. Nonlinear ultrasonic measurements were performed using a contact piezoelectric method to obtain the relative ultrasonic nonlinearity parameter, and a mini-sized tensile test was performed to investigate the correlation of the parameter with material properties. Experimental results showed that the ultrasonic nonlinearity parameter had a correlation with tensile properties such as the tensile strength and elongation. Consequently, we could confirm the applicability of the nonlinear ultrasonic technique to the evaluation of the thermal embrittlement of CASS.