• Title/Summary/Keyword: Foundry material

Search Result 201, Processing Time 0.02 seconds

Fabrication of Thin Plate of Semisolid Material using Slope Plate Process and Development of Fabrication Apparatus (Slope plate 공법을 이용한 반응고 박판 및 제조 장치 개발)

  • Koo, Ja-Yoon;Bae, Jung-Woon;Jin, Chul-Kyu;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.32 no.1
    • /
    • pp.24-31
    • /
    • 2012
  • In this study, semi-solid thin plate of A 356 aluminum alloy was fabricated by using slope plate apparatus and vacuum pressurization. Slope plate was used to produce semi-solid material with spheroidal microstructures. After molten metal was poured into the slope plate connected to the pouring hole of die, semi-solid material flowed into the die cavity by vacuum degree. The primary crystals of the cast metal became spheroidal. In order to increase the working pressure, gas pressurization of U shape was designed for fabrication of thin plate. For 3 bar of gas pressure and 60 mmHg of vacuum degree, thin plate was fabricated without defects on surface.

The Effect of the Sn contents on Rapidly Solidified Ag-X%Zn Electric Contact Materials (급속응고한 Ag-X%Zn계 전기접점재료에 미치는 Sn함량의 영향)

  • Kim, Jong-Kyu;Jang, Dae-Jung;Ju, Kwang-Il;Lee, Eun-Ho;Um, Seung-Yeul;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.28 no.4
    • /
    • pp.184-189
    • /
    • 2008
  • Ag-Cd alloy has been widely used as an electrical contact material, since Ag-Cd alloy has a good wear resistance and stable contact resistance. But nowadays Ag-Cd alloy is not considered as electrical contact material any more due to detrimental effect on environments. Currently, active researches are being performed on ($Ag-SnO_2$ and $Ag-SnO_{2}-In_{2}O_{3}$) as an alternative solution which can fix the remaining environmental problems. However, $In_{2}O_{3}$ is relatively expensive and Ag-Sn alloy has low wear resistance. Our recent research results show that Ag-X%Zn-Y%Sn has similar physical and chemical properties. In the present study, so we tried to change and to optimize the Zn oxide content to over 6 wt% and Sn oxide content with 0.5, 1.0, 1.5 wt%. Results obtained from the experiments on the Ag-X%ZnO-Y%$SnO_2$ are discussed.

Application of Bulk Talc to Molding Material (주형재료로서 덩어리 활석의 이용)

  • Ha, Man-Jin;Lee, Zin-Hyoung;Lee, Sang-Soo;Eun, Hee-Joon
    • Journal of Korea Foundry Society
    • /
    • v.14 no.1
    • /
    • pp.45-51
    • /
    • 1994
  • The possibility of using bulk talc as molding material was reviewed and tested with the measurement of thermal properties and computer simulations. The measured thermal conductivity and heat diffusivity($k{\rho}c$) of talc were $2.4W/m^{\circ}C$ and $6.6{\times}10^6J^2/m^4^{\circ}C^2s$, respectively. Thermal properties of talc could be ranked between those of sand mold and iron mold. Talc transforms into cristobalite and enstatite at $910^{\circ}C$, During the transformation volume and structure change, cracks appear on the surface and distortion occurs. Therefore talc can be used for molding material below $910^{\circ}C$ if carefully treated. Computer simulation was carried out to test whether talc insert could promote directional solidification in sand mold and iron mold. In sand mold, it was possible to achieve directional solidification of thin plate casting with the length to thickness ratio of 15, if both iron insert and talc insert were used. In iron mold, it was possible to achieve directional solidification only with talc insert.

  • PDF

A Study on Fabrication of Al-Cu alloy bar by Melt-extrusion Process (용탕압출법에 의한 Al-Cu 합금 선재의 제조에 관한 연구)

  • Joo, Dae-Heon;Lee, Byoung-Soo;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.24 no.6
    • /
    • pp.331-339
    • /
    • 2004
  • Melt-extrusion process, a metallic melt poured and solidified up to semisolid state in the container can be directly extruded through the die exit to form a product of bar shape without other intermediate processes. In this study, the fabrication characteristics of the process were evaluated with various process parameters, such as preheating temperature of extrusion dies, extrusion temperature and extrusion ratio. AI-Cu alloys were successfully extruded after squeezing out of liquid during melt-extrusion with smaller force compared to the solid extrusion. Soundly AI-Cu alloy bar was fabricated at the preheating temperature of $500{\sim}520^{\circ}C$. The range of extrusion temperature for soundly melt-extruded AI-Cu alloy bar was increased with increasing extrusion ratio. Mechanical properties of melt-extruded AI-Cu alloy bars were found change with Cu content of the melt-extruded bars due to the occurrence of segregation. The various extrusion temperature yielded equiaxed structure with a grains size about 200 ${\mu}m$.

Effects of Alloying Elements on the Characteristics of Microstructure and High Temperature Oxidation of Cast Austenitic Stainless Steel (오스테나이트 스테인리스 주강의 미세 조직 및 고온 산화 특성에 미치는 합금원소의 영향)

  • Lee, In-Sung;Jeon, Soon-Hyeok;Kim, Soon-Tae;Lee, Jung-Suk;Ko, Young-Sang;Kim, Jong-Myoung
    • Journal of Korea Foundry Society
    • /
    • v.30 no.5
    • /
    • pp.179-186
    • /
    • 2010
  • To elucidate the effects of alloying elements on the characteristics of microstructure and high temperature oxidation of cast austenitic stainless steel, a thermodynamic calculation, a cyclic oxidation test, a X-ray diffraction, a scanning electron microscopy-back scattered electron, a electron probe microanalysis were conducted. The thermodynamic calculation for the effect of vanadium (V) addition on the formation of various precipitates leads to a decrease of chromium (Cr)-rich $M_{23}C_6$ carbides due to the formation of M (C, N) carbo-nitrides containing V and / or niobium (Nb). The V added alloy increased the resistance to high temperature oxidation due to a decrease of Cr-depleted zone deteriorating the oxidation resistance and due to the V-enriched oxide layer formed in inner oxide layer blocking the outward transport of cations.

A Effect of the Oxidation Process on the Lifetime Properties of Ag-CdO Contact Materials (산화 방식이 Ag-CdO계 전기접점재료의 수명 특성에 미치는 영향)

  • Kwon, Gi-Bong;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.25 no.6
    • /
    • pp.233-239
    • /
    • 2005
  • Contact material is widely used in the field of electrical parts. Ag-CdO has a good wear resistance and stable contact resistance. We studied a lifetime of Ag-CdO material because of getting better properties of Ag-CdO using Post-oxidation. The experimental procedure were melting using high frequency induction, heat treatment, rolling and internal oxidation. And we experimented on difference process, Post-oxidaion. Then we tested a lifetime and analysed. We obtained the optimizing oxidation temperature was $750^{\circ}C$. Using Pre-oxidation, coarse oxide and depleted oxidation layer existed but finer oxides were existed and depleted oxidation layer was not using Post-oxidation. In Post-oxidation, The density was 10 $g/cm^{3}$, the hardness was Hv 80 and the adhesive strength was 9000N. The specimen of Post-oxidation had better lifetime properties than that of Pre-oxidation. We predicted that the lifetime of Post-oxidation specimen is more longer twice than that of Pre-oxidation one.

A Study on the Hardening Behavior and Metal-Mold Reaction in Dental Investment Materials for Titanium Castings (티타늄합금 주조용 치과매몰재의 조성에 따른 경화거동 및 용탕반응성에 관한 연구)

  • Jeong, Kuk-Jin;Yeo, In-Dong;Shim, Kwang-Bo
    • Journal of Korea Foundry Society
    • /
    • v.19 no.5
    • /
    • pp.419-426
    • /
    • 1999
  • Hardening behavior and metal-mold reaction of phosphate bonded investments for titanium and titanium alloys were investigated. Alumina and $Y_2O_3-stabilized$ zirconia, which are thermodynamically more stable than Titania, were used as major filler materials. $NH_4H_2PO_4$ was used as binder, and MgO was used as hardening acceleration material. A different composition ratio of binder and hardening acceleration material had effected on general hardening behavior and castings. And adding $YO_3-stabilized$ zirconia to alumina, metal-mold reaction characteristics for castings was evaluated. Considering working conditions and effects on castings, the best composition ratio conditions were both 10:10 and 12:8($NH_4H_2PO_4vs.\;MgO$). On the other hand, increasing the contents of $Y_2O_3-stabilized$ zirconia for filler material, metal-mold reaction layer of titanium castings was greatly decreased.

  • PDF

Characteristics of Asphalt Concrete using Waste Foundry Sand (주물고사 첨가 아스팔트 콘크리트의 특성에 관한 연구)

  • Kim, Kwang-Woo;Ko, Dong-Hyuk;Choi, Dong-Chon;Kim, Sung-Won;Kim, Joong-Yul
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.105-116
    • /
    • 2001
  • This study was performed to evaluate the characteristics of waste foundry sand (WFS) and the asphalt mixture made of a foundry waste sand. To estimate the applicability of WFS, chemical and physical properties were measured by XRF(X-ray fluorescent), and SEM(Scanning electronic microfilm). To improve the stripping resistance of WFS asphalt mixture, anti-stripping agents (a hydrated lime and a liquid anti-stripping agent) were used. To improve tensile properties and durability of WFS asphalt concrete mixture, LDPE(low-density polyethylene) was used as an asphalt modifier Marshall mix design, indirect tensile strength, tensile strength ratio(TSR) after freezing and thawing, moisture susceptibility and wheel tracking tests were carried out to evaluate performance of WFS asphalt concrete. Comparing with conventional asphalt concrete, WFS asphalt concretes showed similar or the better qualify in mechanical properties, and satisfied all specification limits. Therefore, it Is concluded that waste foundry sand can be recycled as an asphalt pavement material.

  • PDF

Characteristics of the Nitride Layers Formed on Ti and Ti-10wt.%Ta-10wt.%Nb Alloys by Plasma Nitriding (플라즈마 이온질화처리 된 Ti 및 Ti-10wt.%Ta-10wt.%Nb 합금의 표면에 형성된 질화층의 특성)

  • Kim, Dong-Hun;Lee, Doh-Jae;Lee, Kwang-Min;Kim, Min-Ki;Lee, Kyung-Ku;Park, Bum-Su
    • Journal of Korea Foundry Society
    • /
    • v.28 no.3
    • /
    • pp.124-128
    • /
    • 2008
  • The nitride layer was formed on Ti and Ti-10 wt.%Ta-10 wt.%Nb alloy by a plasma nitriding method. Temperature was selected as the main experimental parameter for plasma nitriding. XRD, EDX, and hardness test were employed to analyze the evolution and material properties of the layer. The SEM observation of TiN nitride layer revealed that the thickness of nitride layer tended to increase with increasing temperature. ${\delta}-TiN$, ${\varepsilon}-Ti_{2}N$ and ${\alpha}-Ti$ phases were detected by XRD analysis and the preferred orientation of TiN nitride layer was obviously observed at (220) plane with increasing temperature. From XRD analysis after step polishing the nitride specimens treated at $850^{\circ}C$, as polishing from the surface, TiN and $Ti_{2}N$ phases decreased gradually. After polishing the surface by $4{\um}m$, a small amount of $Ti_{2}N$ and ${\alpha}-Ti$ phases were observed. The adhesive strength test result indicated that adhesive strength increased with increasing temperature.

Carbon Pick-up Phenomena in Plain Carbon Steel by Evaporative Pattern Casting Process (소실모형구조법에 의한 탄소강주강 제조시의 Carbon Pick-up 현상)

  • Park, Ik-Min;Park, Hee-Sang;Lee, Dong-Ryol;Lee, Kyung-Whoan;Lee, Zin-Hyoung
    • Journal of Korea Foundry Society
    • /
    • v.23 no.2
    • /
    • pp.86-93
    • /
    • 2003
  • It has been a major concern in the foundry that steel castings manufactured by the evaporative pattern casting process encounter the carbon pick-up problem. A carbon rich layer at the evaporative pattern cast surface is a result of interactions between the gaseous products from foamed polystyrene and the molten metal. The carburized layer with a high hardness makes it difficult to machine the casting. In this study, the influence of the density of EPS pattern and coatings on carbon pick-up phenomena of S25C and S45C commercial carbon cast steel were investigated. As the density of EPS pattern is increased, the carbon concentration of decomposed pattern is increased and the thickness of carburized layer at the surface of steel castings is increased. Also as the density of coatings is increased, the permeability of coatings is decreased and the thickness of carburized layer at the surface of steel castings is increased. S25C steel which has lower original carbon content compared to S45C steel exhibited severe carburization.