Characteristics of the Nitride Layers Formed on Ti and Ti-10wt.%Ta-10wt.%Nb Alloys by Plasma Nitriding

플라즈마 이온질화처리 된 Ti 및 Ti-10wt.%Ta-10wt.%Nb 합금의 표면에 형성된 질화층의 특성

  • Kim, Dong-Hun (Department of Material Science & Engineering, Chonnam National University) ;
  • Lee, Doh-Jae (Department of Material Science & Engineering, Chonnam National University) ;
  • Lee, Kwang-Min (Department of Material Science & Engineering, Chonnam National University) ;
  • Kim, Min-Ki (Department of Material Science & Engineering, Chonnam National University) ;
  • Lee, Kyung-Ku (Department of Material Science & Engineering, Chonnam National University) ;
  • Park, Bum-Su (A. G. Optics Co.)
  • 김동훈 (전남대학교 공과대학 신소재공학부) ;
  • 이도재 (전남대학교 공과대학 신소재공학부) ;
  • 이광민 (전남대학교 공과대학 신소재공학부) ;
  • 김민기 (전남대학교 공과대학 신소재공학부) ;
  • 이경구 (전남대학교 공과대학 신소재공학부) ;
  • 박범수 ((주)에이지광학)
  • Published : 2008.05.20

Abstract

The nitride layer was formed on Ti and Ti-10 wt.%Ta-10 wt.%Nb alloy by a plasma nitriding method. Temperature was selected as the main experimental parameter for plasma nitriding. XRD, EDX, and hardness test were employed to analyze the evolution and material properties of the layer. The SEM observation of TiN nitride layer revealed that the thickness of nitride layer tended to increase with increasing temperature. ${\delta}-TiN$, ${\varepsilon}-Ti_{2}N$ and ${\alpha}-Ti$ phases were detected by XRD analysis and the preferred orientation of TiN nitride layer was obviously observed at (220) plane with increasing temperature. From XRD analysis after step polishing the nitride specimens treated at $850^{\circ}C$, as polishing from the surface, TiN and $Ti_{2}N$ phases decreased gradually. After polishing the surface by $4{\um}m$, a small amount of $Ti_{2}N$ and ${\alpha}-Ti$ phases were observed. The adhesive strength test result indicated that adhesive strength increased with increasing temperature.

Keywords

References

  1. S.G. Steinemann, Evalution of Biomaterials, Ed. by G.D. Winter, J.L. Leray, K. de Goot, John Wiley & Sons Ltd., 1 (1980)
  2. W. Kaim and B. Schwederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, John Wiley & Sons Ltd., 330 (1994)
  3. D.J.Lee, T.W.Oh, B.S.Park, S.H.Kim, Kor. J. of Mater. Research v.14, n.3 (2004) 211-217 https://doi.org/10.3740/MRSK.2004.14.3.211
  4. M. T. Milliano, L. A. Whiteside, A. D. Kaiser and P. A. Zwirkowski: Clin. Orthop., 287 (1993) 178
  5. B. Demri, M. Hage-Ali, M. Moritz and D. Muster: Biomaterials, 18 (1997) 305-310 https://doi.org/10.1016/S0142-9612(96)00130-5
  6. B. O. Aronsson, J. Lausmaa and B. Kasemo: J. Biomed. Mater. Res., 35 (1997) 47
  7. D. Krupa, J. Baszkiewicz, J. Kozubowski, B. Barcz, G. Gawlik, J. Jagielski and P. Larisch, Surf. coat. Tech., 96 (1997) 223-229 https://doi.org/10.1016/S0257-8972(97)00107-2
  8. I. Dion, X. Rogues, N. More, L. Labrousse, J. Caix, F. Lefebvre, F. Rouais, J. Gautreau, ch. Baguey: Biomaterials, 14 (1993) 712-719 https://doi.org/10.1016/0142-9612(93)90070-I
  9. T. Hara, K. Tani, K. Inoue, Appl. Phys. Lett. 57(16) (1990) 160
  10. K. -T. Rie, T. stucky, R. A. Silva, E. Leitao, K.Bordij. J. -Y. Jouzeau, D. Minard: Surf. Coat. Tech., 74-75 (1995) 973-980 https://doi.org/10.1016/0257-8972(95)08316-2
  11. F. M. Kustas, M. S. Misra, R. Wei, P. J. Wilbar, J. A. Knapp: Surf. Coat. Tech., 51 (1992) 100-105 https://doi.org/10.1016/0257-8972(92)90221-U
  12. S. L. R. da Silva, L. O. Kerber, L. A maral, C. A. dos santos: Surf. Coat. Tech., 116-119 (1999) 342-346 https://doi.org/10.1016/S0257-8972(99)00204-2
  13. F. Galliano, E. Galvanetto, S. Mischler, D. Landolt: Surf. Coat. Tech., 145 (2001) 121-131 https://doi.org/10.1016/S0257-8972(01)01309-3
  14. E. Roliuski :, G. sharp, D. F. Cowgill, D. J. Peterman: J. Nucl. Mater. 252 (1998) 200 https://doi.org/10.1016/S0022-3115(97)00325-5
  15. J. Stallard, S. Poulat, D.G. Teer, Tribology International, 39, 2, February (2006) 159 https://doi.org/10.1016/j.triboint.2005.04.011
  16. E. Metin, O. T. Inal: Metall. Trans. 20A (1989) 1819