• Title/Summary/Keyword: Foundation Model

Search Result 2,234, Processing Time 0.028 seconds

ESG Management Strategy and Performance Management Plan Suitable for Social Welfare Institutions : Centered on Cheonan City Social Welfare Foundation (사회복지기관에 적합한 ESG경영 전략도출 및 성과관리방안 : 천안시사회복지재단을 중심으로)

  • Hwang, Kyoo-il
    • Journal of Venture Innovation
    • /
    • v.6 no.3
    • /
    • pp.165-184
    • /
    • 2023
  • Since municipal welfare institutions operate for different purposes from general companies or public enterprises, ESG practice items and model construction should be conducted through various and comprehensive social welfare studies. Since there are not many studies available in domestic welfare institutions yet and there are no suitable ESG management utilization indicators, the Cheonan Welfare Foundation's strategy and management strategy system were established to spread the model to other welfare institutions and become a leading foundation through education and training. The foundation and front-line welfare institutions selected issues identification and key issues through the foundation's empirical analysis and criticality analysis, focusing on understanding ESG management and ways to establish a practice model that positively affects institutional image and business performance. Based on this, the promotion system was examined by establishing a performance management plan after deriving appropriate strategies and establishing a strategic system for social welfare institutions. Environmental and social responsibility, transparent management, safety management system establishment, emergency and prevention, user (customer) satisfaction system establishment, anti-corruption prevention and integrity ethics monitoring and evaluation, responsible supply chains, and community contribution programs. This study attempted to specifically present efforts to settle ESG management through the consideration of the Cheonan Welfare Foundation. Therefore, it is considered to be useful data for developing ESG management by referring to the systematic development process of the Cheonan City Restoration Foundation to develop ESG measurement indicators.

The Behavior and Resistance of Connected-pile Foundations for Transmission Tower from In-situ Lateral Load Tests (송전용 철탑기초의 현장수평재하시험을 통한 연결형 말뚝기초의 거동 및 지지력특성)

  • Kyung, Doo-Hyun;Lee, Jun-Hwan;Paik, Kyu-Ho;Kim, Dae-Hong;Kim, Dae-Hak
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.57-70
    • /
    • 2012
  • For soft ground, a pile foundation is typically used as a substructure of transmission tower. However, differential settlement between the foundations can cause structural damage of transmission tower. The connected-pile foundation is a type of group foundation consisting of four foundations connected with beams, and it was suggested in USA and Japan. In this study, a series of 1/8 scale model pile tests were performed to investigate the effect of load direction and stiffness of connecting beam on the responses of connected-pile foundation. As a result, the load capacities of the connected-pile foundation were larger than those of the conventional group pile foundation. For example, under the given test conditions in this paper, the resistibility against differential settlement was improved significantly for connected-pile foundation and its efficiency was maximized when the stiffness of connecting beams is about 25% of the mat foundation.

Experimental study of dynamic interaction between group of intake towers and water

  • Wang, Haibo;Li, Deyu;Tang, Bihua
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.163-179
    • /
    • 2014
  • Dynamic test with scaled model of a group of intake towers was performed to study the dynamic interaction between water and towers. The test model consists of intake tower or towers, massless foundation near the towers and part of water to simulate the dynamic interaction of tower-water-foundation system. Models with a single tower and 4 towers were tested to find the different influences of the water on the tower dynamic properties, seismic responses as well as dynamic water-tower interaction. It is found that the water has little influence on the resonant frequency in the direction perpendicular to flow due to the normal force transfer role of the water in the contraction joints between towers. By the same effect of the water, maximum accelerations in the same direction on 4 towers tend to close to each other as the water level increased from low to normal level. Moreover, the acceleration responses of the single tower model are larger than the group of towers model in both directions in general. Within 30m from the surface of water, hydrodynamic pressures were quite close for a single tower and group of towers model at two water levels. For points deeper than 30m, the pressures increased about 40 to 55% for the group of towers model than the single tower model at both water levels. In respect to the pressures at different towers, two mid towers experienced higher than two side towers, the deeper, the larger the difference. And the inside hydrodynamic pressures are more dependent on ground motions than the outside.

Seismic Response Analysis of Bridges Using Equivalent Linear Soil/Foundation Spring Model (등가선형 지반스프링모델을 사용한 교량의 지진응답해석)

  • 박형기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.372-380
    • /
    • 2000
  • Seismic forces for member design of bridges may be determined by modifying elastic member forces induced by design earthquakes using appropriate response modification factors according to national design code of bridges. Modeling of soil/foundation system is one of the critical parameter in the process of elastic seismic analysis of bridge system which greatly affects on the analysis results. In this paper, a simplified modelling procedure of soil/foundation system which gives practically reasonable results is presented and its applicability has been validated through example bridge. Based on the results, it has been shown that the procedure is acceptable in modelling soil/foundation system for practical seismic analysis of bridges.

  • PDF

Dynamic Behavior Analysis of Bridges under the Combined Effect of Earthquake and Scour (지진 및 기초의 세굴을 고려한 교량시스템의 동적거동분석)

  • 김상효;최성욱;이상우;김호상
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.187-194
    • /
    • 2002
  • Bridge dynamic behaviors and the failure of the foundation are examined in this study under seismic excitations including the local scour effect. The simplified mechanical model, which can consider the effect of various influence elements, is proposed to simulate the bridge motions. The scour depths around the foundations are estimated by the CSU equation recommended by the HEC-18 and the local scour effect upon global bridge motions is then considered by applying various foundation stiffness based upon the reduced embedded depths. From the simulation results, it is found that seismic responses of a bridge with the same scour depth for both foundations increase due to the local scour effect. The bridge scour is found to be significant under weak and moderate seismic intensity. The recovery durations of the foundation stiffness after local scour are found to be critical in the estimation of the probability of foundation failure under earthquakes. Therefore, the safety of the whole bridge system should be conducted with the consideration of the scour effect upon the foundations and the recovery duration of stiffness should be determined rationally.

  • PDF

Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)

  • Bilouei, Babak Safari;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.1053-1063
    • /
    • 2016
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. For the first time, the nonlinear buckling of straight concrete columns armed with single-walled carbon nanotubes (SWCNTs) resting on foundation is investigated in the present study. The column is modelled with Euler-Bernoulli beam theory. The characteristics of the equivalent composite being determined using the Mori-Tanaka model. The foundation around the column is simulated with spring and shear layer. Employing nonlinear strains-displacements, energy methods and Hamilton's principal, the governing equations are derived. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The influences of volume percent of SWCNTs, geometrical parameters, elastic foundation and boundary conditions on the buckling of column are investigated. Numerical results indicate that reinforcing the concrete column with SWCNTs, the structure becomes stiffer and the buckling load increases with respect to concrete column armed with steel.

The behavior of breakwaters utilizing buoyancy for soft ground (부력을 이용한 연약지반용 방파제의 거동분석)

  • Yun, Hee-Suk;Jang, In-Sung;Kwon, O-Soon;Lee, Sun-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.300-310
    • /
    • 2008
  • A series of numerical simulations on the several types of breakwaters on the foundation systems utilizing buoyancy were carried out in plane-strain conditions using the modified Cam-Clay model and the Biot's consolidation theory. Improved foundation system by the replacement of original ground with light weighted material, expandable poly-styrene (called below EPS) and several foundation systems with buoyant cells were used. From the results of numerical simulations we found that the foundation systems utilizing buoyancy are efficient to reduce the maximum consolidation settlements without reducing lateral safety.

  • PDF

Comparative dynamic analysis of axially loaded beams on modified Vlasov foundation

  • Hizal, Caglayan;Catal, Hikmet Huseyin
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.969-988
    • /
    • 2016
  • Vibration analysis of the beams on elastic foundation has gained the great interest of many researchers. In the literature, there are many studies that focus on the free vibration analysis of the beams on one or two parameter elastic foundations. On the other hand, there are no sufficient studies especially focus on the comparison of dynamic response including the bending moment and shear force of the beams resting on Winkler and two parameter foundations. In this study, dynamic response of the axially loaded Timoshenko beams resting on modified Vlasov type elastic soil was investigated by using the separation of variables method. Governing equations were obtained by assuming that the material had linear elastic behaviour and mass of the beam was distributed along its length. Numerical analysis were provided and presented in figures to find out the differences between the modified Vlasov model and conventional Winkler type foundation. Furthermore, the effect of shear deformation of elastic soil on the dynamic response of the beam was investigated.

Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Rabia, Benferhat
    • Coupled systems mechanics
    • /
    • v.9 no.5
    • /
    • pp.473-498
    • /
    • 2020
  • This paper presents a careful theoretical investigation into interfacial stresses in reinforced concrete foundation beam repairing with composite plate. The essential issue in the analysis of reinforced structures with composite materials is to understand the individual behaviour of each material and its interaction with the remaining ones. The present model is based on equilibrium and deformations compatibility requirements in and all parts of the repaired RC foundation beam, i.e., the reinforced concrete foundation beam, the composite plate and the adhesive layer. The theoretical predictions are compared with other existing solutions, By comparisons between the existing solutions and the present new solution enable a clear appreciation of the effects of various parameters such as the geometric characteristics and mechanical properties of the components of the repaired beam, as well as the geotechnical stresses of the soil are considered. This research is helpful for the understanding on mechanical behaviour of the interface and design of the composite-concrete hybrid structures.

Post-buckling of cylindrical shells with spiral stiffeners under elastic foundation

  • Shaterzadeh, Alireza;Foroutan, Kamran
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.615-631
    • /
    • 2016
  • In this paper, an analytical method for the Post-buckling response of cylindrical shells with spiral stiffeners surrounded by an elastic medium subjected to external pressure is presented. The proposed model is based on two parameters elastic foundation Winkler and Pasternak. The material properties of the shell and stiffeners are assumed to be continuously graded in the thickness direction. According to the Von Karman nonlinear equations and the classical plate theory of shells, strain-displacement relations are obtained. The smeared stiffeners technique and Galerkin method is used to solve the nonlinear problem. To valid the formulations, comparisons are made with the available solutions for nonlinear static buckling of stiffened homogeneous and un-stiffened FGM cylindrical shells. The obtained results show the elastic foundation Winkler on the response of buckling is more effective than the elastic foundation Pasternak. Also the ceramic shells buckling strength higher than the metal shells and minimum critical buckling load is occurred, when both of the stiffeners have angle of thirty degrees.