• Title/Summary/Keyword: Fossil Power Plant

Search Result 217, Processing Time 0.035 seconds

Creep Damage Evaluation of Cr-Mo Steel High-Temperature Pipeline Material for Fossil Power Plant Using Ultrasonic Test Method (초음파법을 이용한 Cr-Mo강 고온배관재료의 크리프손상 평가)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.18-26
    • /
    • 2000
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operating conditions such as high temperature and high pressure for an extended period time. Conventional measurement techniques(replica method, electric resistance method, and hardness test method) for measuring creep damage have such disadvantages as complex preparation and measurement procedures, too many control parameters. And also these techniques have low practicality and applied only to component surfaces with good accessibility. In this paper, artificial creep degradation test and ultrasonic measurement for their creep degraded specimens(Cr-Mo alloy steels) were carried out for the purpose of evaluation for creep damage. Absolute measuring method of quantitative ultrasonic measurement for material degradation was established, and long term creep degradation tests using life prediction formula were carried out. As a result of ultrasonic tests for crept specimens. we conformed that both the sound velocity decreased and attenuation coefficient linearly increased in proportion to the Increase of creep life fraction($\Phi$c).

  • PDF

A Study on the Independent Operation and Connected Operation of Microgrid (마이크로그리드의 독립운영 및 연계운영에 관한 연구)

  • Oh, Hyun-Ju;Park, Sung-Jun;Park, Seong-Mi;Kim, Chun-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1199-1206
    • /
    • 2022
  • Fossil fuels are one of the various energy sources used by humans, and industrial development has been achieved by relying on fossil fuels for a long time in the past. In order to respond to the depletion of fossil fuels and climate change, the world is trying to build an eco-friendly energy ecosystem. Research on efficiency improvement using renewable energy and ESS in various ways for energy conversion is being promoted. In this paper, a microgrid for industrial complexes was designed, constructed, and demonstrated. It was operated in two modes: an independent mode that each plant generates and uses independently and a connected operation mode that allows energy sharing between factories. In the case of independent mode, PV and PCS were intermittently stopped and restarted according to the status change of SoC section of each site. But, in the case of the connected operation mode, stable power supply was confirmed through power transaction through the operation of the entire SoC. This paper presented and verified an algorithm to stably supply power to industrial complexes consisting of various consumers with different load characteristics.

A Study on DC Arc Accident Detection Circuit of Solar Cell Module (태양전지 모듈의 DC 아크사고 감지회로에 관한 연구)

  • Jung, Min-Sang;Kwak, Dong-Kurl;Lee, Bong-Sub;Choi, Jung-Kyu
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.546-548
    • /
    • 2019
  • Due to environmental problems, fossil fuel and nuclear power generation are declining and solar power generation is increasing. DC are of a solar power plant is accidents caused by accidents, causing damage to property and people. This study prevents DC are accidents of solar power modules. It is expected that the IoT will be used to quickly alert the manager and greatly contribute to fire prevention.

  • PDF

Prediction of 2X Vibration of a Generator Rotor with Asymmetric Shaft Stiffness (비대칭 축 강성을 가지는 발전기 회전자의 2X 진동 예측)

  • Park, C.H.;Kim, Y.C.;Cho, K.G.;Yang, B.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.16-19
    • /
    • 2007
  • The large generator rotor used in fossil power plant has the possibility of high 2X vibration due to asymmetric shaft stiffness. The generator rotor is machined into pole faces to reduce stiffness difference and then is tested through 2X vibration measurement when the balancing works are performed in the balancing shop. However, there are many cases of large difference values between 2X vibration in the balancing shop and 2X vibration in site. This paper presents a new method to estimate 2X vibration in site with more accuracy and applied for the retrofit of a fossil 400 MW class deteriorated generator. It shows that the new generator rotor is manufactured with a good 2X vibration characteristics and is operated in a low 2X vibration level although the generator rotor has high 2X vibration in the balancing shop.

  • PDF

A Circulating Fluidized Bed Boiler Control (순환 유동층 보일러 제어)

  • Kim, Eung-Seok;Lee, Chan-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.722-724
    • /
    • 1998
  • One of the major concerns of our time is the need to use energy economically and rationally while at the same time, protecting the environment. Circulating Fluidized Bed(CFB) Boilers represent a proven, very attractive clean coal technology, with the added advantage of an unusual fuel flexibility CFB boiler is the best available compromise between cost and environment for fossil fuel power plant. This paper briefly describes CFB process and 200MW CFB boiler for Tonghae power plant. Also, discussed are differences between the control process of fluidized bed and conventional boilers, and applied control process for Tonghae power plant.

  • PDF

The Characteristics of Residual Stresses in the Welded Joint of P92 Steel for Fossil Power Plant by the X-ray Diffraction (X-ray 회절을 이용한 화력발전소용 P92 강 용접부의 잔류응력 특성)

  • Hyun, Jung-Seob;Yoo, Keun-Bong;Choi, Hyun-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.116-123
    • /
    • 2008
  • In the fossil power plant, the reliability of the components which consist of the many welded parts depends on the quality of welding. The residual stress is occurred by the heat flux of high temperature during weld process. This decreases the mechanical properties as the strength of fatigue and fracture or causes the stress corrosion cracking and fatigue fracture. Especially, the accidents due to the residual stress occurred at the weld parts of high-temperature and high-pressure pipes and steam headers. Also, the residual stress of the welded part in the recently constructed power plants has been brought into relief as the cause of various accidents. The aim of this study is the measurement of the residual stress using the x-ray diffraction method. The merits of this are more accurate and applicable than other methods. The materials used for the study is P92 steel for the use of high temperature pipe on super critical condition. The variables of tests are the post-weld heat treatment, the surface roughness and the depth from the original surface. The test results were analyzed by the distributed characteristics of the full width at half maximum intensity (FWHM) in x-ray diffraction intensity curve and by the relation of hardness with FWHM.

Desulfurization Characteristics for Anthracite Coal Power Plant by Increasing Bituminous Coal Fuel (국내 무연탄 발전소 역청탄 사용시 탈황 특성 연구)

  • Kim, Jeong-You;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.4
    • /
    • pp.71-77
    • /
    • 2008
  • The sulfur oxides is one of important materials to come about air pollution at thermal plant consuming fossil fuel. The several flue gas desulfurization equipments are installed and operated to decrease sulfur oxides. The flue gas desulfurization of our thermal plant is designed for optimizing flue gas desulfurization technical development and research by Korea Electric Power Research Institute. We operate this desulfurization equipment. Now, our country imports nearly 97 percentage of the energy source and competes with the world for the energy because of the sudden rise of raw materials cost. The fuel cost decrease of power plants is the most important factor of the operation. The fuel used in the experiment is the domestic anthracite from Kangwon Taeback and the bituminous coal from Taldinsky Mine in Russia. This Study is experimental investigations of desulfurization characteristics for domestic anthracite power plant by increasing bituminous coal. We surveyed possible parameters and conducted the performance about desulfurization equipment in Yong Dong thermal power plant.

  • PDF

Development of Power Plant Simulator for Control System Verification & Validation (제어 검증용 발전소 시뮬레이터 개발)

  • Byun, Seung-Hyun;Hwang, Do-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.41-51
    • /
    • 2010
  • A control system has been being developed by korean engineers for 500MW korean standard type fossil power plant with the advent of retrofit of old control system. Simulators have been used for digital I&C system pre-tests and validation tests in nuclear power plants. In this paper, the power plant simulator for control system V&V was developed in order to verify the developed control system prior to application to a power plant. The control models were developed using plant control system data, translator programs, and vendor manuals. The developed simulator was verified by steady-state test, load swing test, transient test and so on.

A Study on Thermal Power Plant Drum Boiler-Turbine System Modeling (화력 발전용 드럼 보일러-터빈 시스템의 모델링에 관한 연구)

  • Kim, Woo-Hun;Moon, Un-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1804-1805
    • /
    • 2011
  • In recent year there has been an increasing interest in the dynamic simulation of complex systems. This study uses a large-scale forty-seventh order fossil fuel power plant. Twenty-three state variables are associated with the physical processes and twenty-four state variables associated with the control system. The plant model is expected to predict all dominant effects in a steady and transient state. In this study, the power plant model is reorganized into four subsystems, each with its controller, and the four connected to each other through a manager, which is a fifth part to the system. The four parts of the unit are the boiler system, steam turbine system, condenser system, and feedwater system.

  • PDF

A Study on the Heat Transfer in boiler through the performance test in thermal power plant (화력발전소 보일러내의 열전달에 관한 연구)

  • Kwon, Y.S.;Suh, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2064-2069
    • /
    • 2004
  • The main reason to analyze heat transfer in boiler inside through the performance test in fossil power plant is to increase plant high efficiency and energy saving movement in the government. Tins study intends to have trend and analyze the boiler heat transfer through the performance test, so it may give us the heat distribution in boiler inside in super-critical and sub-critica1 pressure type power plant

  • PDF