• Title/Summary/Keyword: Forwarding Node

Search Result 178, Processing Time 0.03 seconds

Void-less Routing Protocol for Position Based Wireless Sensor Networks (위치기반 무선 센서 네트워크를 위한 보이드(void) 회피 라우팅 프로토콜)

  • Joshi, Gyanendra Prasad;JaeGal, Chan;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.10
    • /
    • pp.29-39
    • /
    • 2008
  • Greedy routing which is easy to apply to geographic wireless sensor networks is frequently used. Greedy routing works well in dense networks whereas in sparse networks it may fail. When greedy routing fails, it needs a recovery algorithm to get out of the communication void. However, additional recovery algorithm causes problems that increase both the amount of packet transmission and energy consumption. Communication void is a condition where all neighbor nodes are further away from the destination than the node currently holding a packet and it therefore cannot forward a packet using greedy forwarding. Therefore we propose a VODUA(Virtually Ordered Distance Upgrade Algorithm) as a novel idea to improve and solve the problem of void. In VODUA, nodes exchange routing graphs that indicate information of connection among the nodes and if there exist a stuck node that cannot forward packets, it is terminated using Distance Cost(DC). In this study, we indicate that packets reach successfully their destination while avoiding void through upgrading of DC. We designed the VODUA algorithm to find valid routes through faster delivery and less energy consumption without requirement for an additional recovery algorithm. Moreover, by using VODUA, a network can be adapted rapidly to node's failure or topological change. This is because the algorithm utilizes information of single hop instead of topological information of entire network. Simulation results show that VODUA can deliver packets from source node to destination with shorter time and less hops than other pre-existing algorithms like GPSR and DUA.

Distributed Construction of the Recrystallization Topology and Efficient Searching in the Unstructured Peer-to-Peer Network (재결정 위상의 분산적 구성과 비구조적 피어투피어 망에서의 효율적 검색)

  • Park, Jae-Hyun
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.4
    • /
    • pp.251-267
    • /
    • 2008
  • In this paper, we present a distributed topology control algorithm for constructing an optimized topology having a minimal search-time in unstructured peer-to-peer network. According to the proposed algorithm, each node selects the best nodes having higher hit-ratio than other nodes as many as the number being exponentially proportional to the hit-ratio of the node itself, and then it connects to them. The ensemble behavior of the proposed algorithm is very similar to the recrystrallizing phenomenon that is observed in nature. There is a partial order relationship among the hit-ratios of most nodes of constructed topology. Therefore once query message visits a node, it has a higher hit-ratio than the node that was visited last by the message. The query message even sent from freeloader can escape to the node having high hit-ratio by one hop forwarding, and it never revisits any freeloader again. Thus the search can be completed within a limited search time. We also propose the Chain-reactive search scheme using the constructed topology. Such a controlled multicasting reduces the query messages by 43 percent compared to that of the naive Gnutella using broadcasting, while it saves the search time by 94 percent. The search success rate of the proposed scheme is 99 percent.

An AODV-Based Two Hops Dynamic Route Maintenance in MANET (MANET에서의 AODV 기반 2홉 동적 경로유지 기법 연구)

  • Moon, Dae-Keun;Kim, Hag-Bae
    • The KIPS Transactions:PartC
    • /
    • v.14C no.2
    • /
    • pp.191-198
    • /
    • 2007
  • A mobile ad-hoc network (MANET) is an autonomous, infrastructure-less system that consists of mobile nodes. In MANET, on demand routing protocols are usually used because network topology changes frequently. AODV, which is a representative on demand routing protocol, operates using the routing table of each node that includes next hop of a route for forwarding packets. It maintains the established route if there is not an expiration of route or any link break. In the paper, we propose a partially adaptive route maintenance scheme (AODV-PA) based on AODV, which provides dynamic route modification of initial route for selecting the effective route using not only next hop but also next-hop of next-hop (i.e. 2-hop next node) acquired through route discovery process. In addition, the proposed scheme additionally manages the routing table for preventing exceptional link breaks by route modification using HELLO messages. We use NS 2 for the computer simulation and validate that the proposed scheme is better than general AODV in terms of packet delivery ratio, latency, routing overhead.

A Routing Protocol for Network Lifetime Extension in MANET (MANET에서 네트워크 수명 연장을 위한 라우팅 프로토콜)

  • Kim, Kyoung-Ja;Han, Sang-Hoon;Koo, Hyun-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.120-129
    • /
    • 2010
  • MANET(Mobile Ad Hoc NETwork) is a collection of mobile nodes that are free to move and organize themselves in an arbitrary manner without any fixed infrastructures. These mobile nodes are connected by wireless links and act as routers for all other nodes in the network. As a router each node in MANET consumes its batteries when forwarding a message, and the selection of the best path to minimize the total power needed to route packets is needed to maximize the lifetime of all nodes. In this paper, we propose a routing protocol considering the remaining battery capacity of nodes in the routing paths. The proposed scheme prevents the battery of each node from being overused and increases the lifetime of the network.

An Internet Stopper Using ARP Spoofing with Automatic Node Identification (자동 노드 인식 기능을 갖는 ARP 스푸핑을 이용한 인터넷 차단기)

  • Jung, In-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.93-106
    • /
    • 2011
  • In this paper we describe an efficient and easy to use internet stopper, which is called AINS (Automatic Internet Stopper), which uses ARP spoofing scheme. Instead of forwarding packets to router for the case of hacking, in ARP spoofing, the AINS ignores all the packets so that internet stopping operates. The AINS program needs to be installed only in manager computer that does not require additional agent program. In addition to setting manually the stopping computer list, it is able to indentify network nodes automatically by analyzing broadcasting packets. The experimental results show that less than 4 secs for spoofing interval is enough for blocking internet usage regardless the number of computers and therefore network overhead is negligible. The AINS can indentify and control network nodes not only on same subnet but also on different subnet only if they are connected onto same ethernet switch physically. It is being used for an efficient tool for controling internet usage of university computer laboratory and also for an efficient network management.

Performance Analysis of Relay applied to Energy Harvesting (에너지 하베스팅을 적용한 중계기의 성능 분석)

  • Kim, Tae-Wook;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.67-72
    • /
    • 2014
  • In this paper, an energy harvesting scheme is applied in the cooperative communication. The proposed scheme uses an energy harvesting relay in which the relay harvests the energy from the source node and transfers to the power form in forwarding the received data to the destination node. The well-known maximal ratio combining (MRC) technique is applied to increase the diversity gain at the destination. Therefore, with applying the proposed energy harvesting scheme, the limited power at the relay is solved, and the operation efficiency of the network and the mobile devices is improved. Finally, performance of the proposed protocol is analyzed in terms of bit error rate, outage probability, power collection efficiency.

Service Mobility Support Scheme in SDN-based Fog Computing Environment (SDN 기반 Fog Computing 환경에서 서비스 이동성 제공 방안)

  • Kyung, Yeun-Woong;Kim, Tae-Kook
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.3
    • /
    • pp.39-44
    • /
    • 2020
  • In this paper, we propose a SDN-based fog computing service mobility support scheme. Fog computing architecture has been attracted because it enables task offloading services to IoT(Internet of Things) devices which has limited computing and power resources. However, since static as well as mobile IoT devices are candidate service targets for the fog computing service, the efficient task offloading scheme considering the mobility should be required. Especially for the IoT services which need low-latency response, the new connection and task offloading delay with the new fog computing node after handover can occur QoS(Quality of Service) degradation. Therefore, this paper proposes an efficient service mobility support scheme which considers both task migration and flow rule pre-installations. Task migration allows for the service connectivity when the fog computing node needs to be changed. In addition, the flow rule pre-installations into the forwarding nodes along the path after handover enables to reduce the connection delay and service interruption time.

The DSTM TEP for IPv4 and IPv6 Interoperability (IPv4/IPv6의 연동을 위한 DSTM TEP의 기능)

  • 진재경;최영지;민상원
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.5
    • /
    • pp.578-587
    • /
    • 2003
  • The DSTM (Dual Stack Transition Mechanism), one of tunneling mechanism, is considered as the best solution in IPv4/IPv6 transition recently. The DSTM provides a method to assure IPv4/v6 connectivity based on 4over6 (IPv4-over-IPv6) tunneling and temporal allocation of a global IPv4 address to a host requiring such communication. A TEP (Tunnel End Point) operates as a border router between IPv6 domain and IPv4 Internet, which performs encapsulation and decapsulation of 4over6 tunneling packets to assure hi-directional forwarding between both networks. In this paper, we analyze basic standards of the IPv6 protocol. And, we design and implement a DSTM TEP daemon block. The TEP daemon analyzes a fevers tunneling packet that is forwarded by the DSTM node, establishes the TEP's 4over6 interface, and supplies communication between a DSTM and a IPv4-only node. Finally, we construct a DSTM testbed and measure performance of the DSTM TEP. Our observation results show that performance of TEP supports the DSTM service.

Improvement of High-Availability Seamless Redundancy (HSR) Traffic Performance for Smart Grid Communications

  • Nsaif, Saad Allawi;Rhee, Jong Myung
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.653-661
    • /
    • 2012
  • High-availability seamless redundancy (HSR) is a redundancy protocol for Ethernet networks that provides two frame copies for each frame sent. Each copy will pass through separate physical paths, pursuing zero fault recovery time. This means that even in the case of a node or a link failure, there is no stoppage of network operations whatsoever. HSR is a potential candidate for the communications of a smart grid, but its main drawback is the unnecessary traffic created due to the duplicated copies of each sent frame, which are generated and circulated inside the network. This downside will degrade network performance and might cause network congestion or even stoppage. In this paper, we present two approaches to solve the above-mentioned problem. The first approach is called quick removing (QR), and is suited to ring or connected ring topologies. The idea is to remove the duplicated frame copies from the network when all the nodes have received one copy of the sent frame and begin to receive the second copy. Therefore, the forwarding of those frame copies until they reach the source node, as occurs in standard HSR, is not needed in QR. Our example shows a traffic reduction of 37.5%compared to the standard HSR protocol. The second approach is called the virtual ring (VRing), which divides any closed-loop HSR network into several VRings. Each VRing will circulate the traffic of a corresponding group of nodes within it. Therefore, the traffic in that group will not affect any of the other network links or nodes, which results in an enhancement of traffic performance. For our sample network, the VRing approach shows a network traffic reduction in the range of 67.7 to 48.4%in a healthy network case and 89.7 to 44.8%in a faulty network case, compared to standard HSR.

Bi-Directional Half-Duplex Relaying Protocols

  • Kim, Sang-Joon;Devroye, Natasha;Tarokh, Vahid
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.433-444
    • /
    • 2009
  • The bi-directional relay channel is the natural extension of a three-terminal relay channel where node a transmits to node b with the help of a relay r to allow for two-way communication between nodes a and b. That is, in a bi-directional relay channel, a and b wish to exchange independent messages over a shared channel with the help of a relay r. The rates at which this communication may reliably take place depend on the assumptions made on the relay processing abilities. We overview information theoretic limits of the bi-directional relay channel under a variety of conditions, before focusing on half-duplex nodes in which communication takes place in a number of temporal phases (resulting in protocols), and nodes may forward messages in four manners. The relay-forwarding considered are: Amplify and forward (AF), decode and forward (DF), compress and forward (CF), and mixed forward. The last scheme is a combination of CF in one direction and DF in the other. We derive inner and outer bounds to the capacity region of the bi-directional relay channel for three temporal protocols under these four relaying schemes. The first protocol is a two phase protocol where a and b simultaneously transmit during the first phase and the relay r alone transmits during the second. The second protocol considers sequential transmissions from a and b followed by a transmission from the relay while the third protocol is a hybrid of the first two protocols and has four phases. We provide a comprehensive treatment of protocols in Gaussian noise, obtaining their respective achievable rate regions, outer bounds, and their relative performance under different SNR and relay geometries.