• 제목/요약/키워드: Forward vehicle collision warning system

검색결과 27건 처리시간 0.041초

전방차량충돌경고장치(FVCWS) 평가 시스템 (Evaluation System for Forward Vehicle Collision Warning System)

  • 용부중;박요한;윤경한;황덕수
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.85-90
    • /
    • 2007
  • The main function of the Forward Vehicle Collision Warning System (FVCWS) is to warn a driver when he or she experiences dangerous situations caused by a forward vehicle. Warning distance algorithms under same dangerous circumstances are often various depending on automobile manufacturers and component suppliers. Human factors also should be considered to warn the driver at an adequate warning distance. Therefore, it is necessary to develop a system for evaluating the pertinent warning timing in an identically dangerous situation. The system consists of sensors for measuring speed and acceleration of subject vehicle and target vehicle, controllers to follow the velocity profile properly, and wireless telecommunication equipments for receiving or transmitting the measured data in a real-time. According to actual field tests, it is shown that the developed system is suitable to evaluate warning distance of FVCWS.

레이더/카메라 센서융합을 이용한 전방차량 충돌경보 시스템 (Forward Collision Warning System based on Radar driven Fusion with Camera)

  • 문승욱;문일기;신광근
    • 자동차안전학회지
    • /
    • 제5권1호
    • /
    • pp.5-10
    • /
    • 2013
  • This paper describes a Forward Collision Warning (FCW) system based on the radar driven fusion with camera. The objective of FCW system is to provide an appropriate alert with satisfying the evaluation scenarios of US-NCAP and a driver acceptance. For this purpose, this paper proposed a data fusion algorithm and a collision warning algorithm. The data fusion algorithm generates information of fusion target depending on the confidence of camera sensor. The collision warning algorithm calculates indexes and determines an appropriate alert-timing by using analysis results of manual driving data. The FCW system with the proposed data fusion and collision warning algorithm was investigated via scenarios of US-NCAP and a real-road driving. It is shown that the proposed FCW system can improve the accuracy of an alarm-timing and reduce the false alarm in real roads.

고속도로에서 차량 안전 통신을 위한 거리 계산과 전방충돌사고경보 알고리즘 (A Interval Distance Calculation and Forward Collision Warning Algorithm for Vehicle Safety Communications on a Highway)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제10권10호
    • /
    • pp.295-300
    • /
    • 2012
  • 차량과의 교통사고를 예방하기 위해 다양한 전방충돌사고경보 시스템이 연구되었다. 이를 위해 일반적으로 카메라와 센서 등과 같은 외부 장치를 이용하는 알고리즘으로 전방충돌 위험 경보를 발생시킨다. 하지만 이런 외부장치를 사용할 경우 안개나 비가 내릴 때 장비 특성에 따른 오차가 발생할 수 있다. 또한, 충돌 위험이 전방에 있는 차량에 대해서만 경보가 발생하는 시스템이기 때문에 연쇄 추돌 사고에 대한 예방은 미흡하다. 이를 차량 안전 통신에 결합하면 연쇄 추돌 사고도 예방할 수 있는 방안이 될 수 있다. 하지만 외부 장치와 차량 안전 통신 프로토콜 간의 호환성 문제가 있다. 그래서 본 논문에서는 무선 통신 기술, 운전자 정보, 제동거리, 속도를 이용한 개선된 전방충돌사고경보 알고리즘을 제안한다. 그리고 제안된 알고리즘과 기존 알고리즘들을 비교 및 분석한다.

전방 추돌 경보를 위한 영상 기반 실시간 차량 검출 및 추적 알고리즘 (Vision-based Real-time Vehicle Detection and Tracking Algorithm for Forward Collision Warning)

  • 홍성훈;박대진
    • 한국정보통신학회논문지
    • /
    • 제25권7호
    • /
    • pp.962-970
    • /
    • 2021
  • 대부분의 자동차 사고는 졸음운전과 같은 운전자의 부주의로 인해 발생한다. 전방 추돌 경보 시스템 (FCWS)은 전방 차량으로부터 추돌 위험을 감지하여 운전자에게 사전에 경고함으로써 사고의 위험을 현저하게 줄여준다. 본 논문은 주행 안전을 위한 저전력 임베디드 기반 FCWS를 소개한다. 단일 카메라로부터 전방 차량에 대해 검출, 추적, 거리를 계산하고 현재 차량의 속도 정보를 통해 충돌시간 (TTC)을 계산한다. 또한 저성능 임베디드 시스템에서 실시간으로 동작하기 위해 높고 낮은 수준의 프로그램 최적화 기법을 소개한다. 이 시스템은 임베디드 시스템에서 사전에 취득해둔 주행 영상을 통해서 테스트 하였다. 최적화 기법을 사용한 결과는 이전에 최적화를 하지 않은 프로세스 보다 실행 시간이 약 170배 향상되었다.

퍼지 논리에 기반한 차량 충돌 경보 알고리듬 (New Vehicle Collision Warning Algorithm Based On Fuzzy Logic)

  • 김선호;오세영
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.233-247
    • /
    • 1999
  • Traffic accidents are normally caused by late or faulty judgements due to the driver's inaccurate estimation of the distance, velocity, and acceleration from the surrounding vehicles as well as his carelessness or inattention. Thus, the development of collision avoidance systems is motivated by their great potential for increased vehicle safety. A typical collision avoidance system consists of the forward-looking sensor, the criteria for activation of collision warming and avoidance, the collision avoidance maneuvers, and the user interface. This thesis is concerned with the development of a collision warning algorithm in which the driver is warned of approaching collision with the visual and/or the audible signals . The warning algorithm based on fuzzy logic is presented here based on new warning criteria. It has been newly derived from the conventional warning equation by adding a new input variable of the required deceleration to avoid collision. The algorithm is also able to adapt to the individual driver's taste along with the different road conditions by externally controlling the warning intensity. Finally , the proposed algorithm has been validated using computer simulation.

  • PDF

Vehicles Auto Collision Detection & Avoidance Protocol

  • Almutairi, Mubarak;Muneer, Kashif;Ur Rehman, Aqeel
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.107-112
    • /
    • 2022
  • The automotive industry is motivated to provide more and more amenities to its customers. The industry is taking advantage of artificial intelligence by increasing different sensors and gadgets in vehicles machoism is forward collision warning, at the same time road accidents are also increasing which is another concern to address. So there is an urgent need to provide an A.I based system to avoid such incidents which can be address by using artificial intelligence and global positioning system. Automotive/smart vehicles protection has become a major study of research for customers, government and also automotive industry engineers In this study a two layered novel hypothetical approach is proposed which include in-time vehicle/obstacle detection with auto warning mechanism for collision detection & avoidance and later in a case of an accident manifestation GPS & video camera based alerts system and interrupt generation to nearby ambulance or rescue-services units for in-time driver rescue.

첨단경고장치가 사업용 차량 운전자의 운전행태에 미치는 영향 분석 (Identifying the effects of advanced warning devices on the driving behaviors of commercial vehicle drivers)

  • 박재영;김도경
    • 한국도로학회논문집
    • /
    • 제20권1호
    • /
    • pp.137-146
    • /
    • 2018
  • PURPOSES : This study aims to analyze how the installation of advanced warning devices affects individual drivers' driving behaviors with operating record data collected from 100 vehicles. METHODS : With collected data, the changes in individual drivers' driving behaviors, such as Forward Collision Warning (FCW) and Lane Departure Warning (LDW), were investigated with respect to the cumulative distance traveled and driving time. For the analysis, operating record data collected from 100 vehicles for seven months were used. RESULTS : The results showed that individual drivers' driving behaviors could be categorized into six different types. In addition, most of the drivers showed unstable warning patterns in the initial stage after installation of an advanced warning device. Approximately 40% of vehicles equipped with advanced warning systems were found to have positive effects, indicating that the frequencies of both FCW and LDW had been continuously decreasing after installation of the system. CONCLUSIONS : The warning device might be helpful for making drivers' driving behaviors safer. Driving behaviors during the initial stage of the system installation, which might be regarded as an adaptation phase, were found to be very unstable compared with normal situations, indicating that adequate education and training should be provided to all the drivers to prevent operator disruption at the initial installation of the system.

종방향 능동안전장치의 평가기준 연구 (Study for Evaluation Standard of Longitudinal Active Safety System)

  • 장현익;용부중;조성우;최인성;민경찬;김규현
    • 자동차안전학회지
    • /
    • 제4권1호
    • /
    • pp.12-17
    • /
    • 2012
  • ADAS(Advanced Driver Assistance System) which is developed for alleviating driver's load has become improved with extending it's role. Previously, ADAS offered simple function just to make driver's convenience. However, nowadays ADAS also acts as Active Safety system which is made to release and/or prevent accidents. Longitudinal control system, as one of major parts of Active Safety System, is assessed as doing direct effect on avoiding accidents. Therefore, many countries such as Europe and America has pushed longitudinal control system as a government-wide project. In this paper, it covers the result of evaluation system and vehicle evaluation for development study in FCW, ACC and AEB.

운전자 인지반응 연구를 위한 VR 시뮬레이션 시스템 개발 (Development of the VR Simulation System for the Study of Driver's Perceptive Response)

  • 장석;권성진;전지훈;조기용;서명원
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.149-156
    • /
    • 2005
  • In this paper, the VR(Virtual Reality) simulation system is developed to analyze driver's perceptive response on the ASV(Advanced Safety Vehicle). The ASV is the vehicle of next generation equipped with various warning systems. For the purpose, the VR simulation system consists of VR database, vehicle dynamic model, graphic/sound system, and driving system. The VR database which generates 3D graphic and sound information is organized for the driving reality. Mathematical models of vehicle dynamic analysis are constructed to represent the dynamic behavior of a vehicle. The driving system and the graphic/sound system provide a driver with the operation of a vehicle and the feedback of a driving situation. Also, the real-time simulation algorithm synchronizes the vehicle dynamic model with the VR database. To check the validity of the developed system, a simple scenario is applied to investigate driver's perceptive response time and vehicle acceleration on an emergency situation. It is confirmed that the proposed system is useful and helpful to design the FVCWS(Forward Vehicle Collision Warning System).