• Title/Summary/Keyword: Forward speed

Search Result 632, Processing Time 0.027 seconds

Steady State Operational Characteristic Analysis of the Propulsion System for the Canard Rotor Wing UAV in three different Flight Modes (비행 모드에 따른 CRW UAV 추진시스템의 정상상태 운전특성 해석)

  • 공창덕;강명철;기자영;박종하;양수석;전용민
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.215-218
    • /
    • 2003
  • In this study, a performance model of the Smart UAV propulsion system with ducts, tip jets and variable main nozzle, which has flight capability of the rotary wing mode for the take-off/landing and low speed forward flight as well as the fixed wing mode for high speed forward flight, has been newly developed. With the proposed model, steady-state performance analysis was performed at various flight modes and conditions, such as rotary wing mode, fixed wing mode, compound wing, mode altitude and flight speed.

  • PDF

A study on the Aerodynamic Characteristics of a Flat plat Variable Wing by Combined Swept Back and Forward (평판 가변날개에서 앞-뒤젖힘이 동시에 변할 때의 공력특성에 관한 연구)

  • Lee, B.J.;Oh, S.D.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.5 no.1
    • /
    • pp.31-50
    • /
    • 1997
  • A new variable wing that can be swept back and forward synchronously were developed to enhance the aerodynamic and stability characteristics of a high speed airplane. The configuration of the new variable wing changes in such a way that inner part of the wing sweeps forward and outer part of the wing sweeps backward, the shift of aerodynamic center of the wing is small, therfore the static margin that is required for the stability of a airplane is not affected. In this study, various configurations of wing models by combined swept back and forward were designed and a wind tunnel tests were conducted to investigate the aerodynamic characteristics of these variable wings. The experimental results showed that the variable wing by combined swept back and forward has no effect on the pitching moment coefficient affecting on an aircraft stability margin and enhance the aerodynamic characteristics for a given approach angle of attack.

  • PDF

Kinematic Analysis of Samdan Didimsae Movement for Jajinmori Jangdan (자진모리장단에 따른 한국무용3단 디딤새 동작에 관한 운동학적 분석)

  • Ahn, Wan-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.203-212
    • /
    • 2008
  • The purpose of this study is to propose appropriate model for 3 staged Didimsae movement to Jajinmori rhythm and to provide information for ideal foot step movements. For the locational change of body center, the height of body center is lowered at the moment of forward step and during forward intersection of the feet, forward direction linear motion is converted to vertical motion to maintain stability. Speed change of body center reduces flow of body on step forward moment and controls rapid forward movement for stabled movement and position when preventing fast forward horizontal direction movement of centroid speed while knee joint and foot joint are vertically risen for heel bone contacts the ground. For angle changes of joints, in order to prevent hyperextension of lower leg, hip joint is extended and knee joint is curved to secure stability of movement for smooth curves and extension. When centroid of foot joint is moved from top of the feet to whole foot sole and when left foot makes dorsal curve, stabled movement is accomplished.

Numerical Investigation of Forward Flight Characteristics of Multi-Ducted Fan (다중 덕트 팬 전진 비행 특성에 대한 수치적 연구)

  • Roh, Nahyeon;Oh, Sejong;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.95-105
    • /
    • 2018
  • Increasing cruise speed is an important issue for the development of the next generation rotorcraft. Among several concepts proposed by previous research, the rotorcraft with ducted fan demonstrates its possibility of high-speed flight. In this study, numerical simulations are conducted to investigate the aerodynamic and flow characteristics of multi-ducted fan in forward flight. The aerodynamic efficiency around front ducted fan is determined by interaction between free-stream velocity and the induced velocity. While flow characteristics of rear ducted fan are dominantly influenced by the front ducted fan. Separation in the front ducted fan occurs faster than that of rear ducted fan, and the separation at duct inlet induces an increase of fan thrust. As a result of interaction effect between each ducted fan, relatively aligned inflow enters to the rear ducted fan. Therefore, thrust of the rear fan is decreased steadily before separation, and sudden changes of thrust in fans occur simultaneously. Due to the pressure decrease on lower surface, the normal force of rotorcraft is reduced with forward speed.

Performance Analysis of Error Control Techniques Using Forward Error Correction in B-ISDN (B-ISDN에서 Forward Error Correction을 이용한 오류제어 기법의 성능분석)

  • 임효택
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9A
    • /
    • pp.1372-1382
    • /
    • 1999
  • The major source of errors in high-speed networks such as Broadband ISDN(B-lSDN) is buffer overflow during congested conditions. These congestion errors are the dominant sources of errors in 1high-speed networks and result in cell losses. Conventional communication protocols use error detection and retransmission to deal with lost packets and transmission errors. However, these conventional ARQ(Automatic Repeat Request) methods are not suitable for the high-speed networks since the transmission delay due to retransmissions becomes significantly large. As an alternative, we have presented a method to recover consecutive cell losses using forward error correction(FEC) in ATM(Asynchronous Transfer Mode)networks to reduce the problem. The performance estimation based on the cell discard process model has showed our method can reduce the cell loss rate substantially. Also, the performance estimations in ATM networks by interleaving and IP multicast service are discussed.

  • PDF

Forward Speeds and Turning Trajectories of a KSUPRAMAX Model Ship in Long-Crested Irregular and Equivalent Regular Waves (KSUPRAMAX 모형선의 장파정 불규칙파 중 전진속도 및 선회궤적을 유사 재현하는 규칙파 탐색)

  • Dong-Jin Kim;Kunhang Yun;Chang-Seop Kwon;Yeon-Gyu Kim;Seung-Hyun Hwang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.4
    • /
    • pp.258-266
    • /
    • 2024
  • It is necessary to predict the ship's manoeuvrabilities in waves for its safe operations in adverse weather. At the early design stage, free-running model tests can be performed to estimate the ship's manoeuvring performance in irregular wave conditions. The wave elevations are randomly varied with times in irregular waves, large deviations of the manoeuvring performance indices are likely to occur depending on the start time of steering scenarios. In this study, a KSUPRAMAX model ship's manoeuvres in long-crested irregular waves are reproduced in the equivalent regular waves. The equivalent regular waves are searched from the energy flux relations between long-crested irregular and regular waves. But there are differences of forward speeds in the model tests, regular wave height and period are modified so that both the forward speed and the trajectory drift in regular waves are similar to those in irregular waves. In addition, low speed course-keeping tests are performed with various wave incident angles in irregular and regular waves. It is confirmed that check helms, drift angles, and speeds as well as trajectories in irregular waves are similar to those in equivalent regular waves.

Optimal Flow Rate Evaluation for Low Energy, High Efficiency Cleaning of Forward Osmosis (FO) (정삼투 공정의 저에너지 고효율 세정을 위한 최적 유속 평가)

  • Kim, Yihyang;Kim, Jungbin;Zhan, Min;Min, Dahae;Hong, Seungkwan
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.339-347
    • /
    • 2019
  • Forward osmosis (FO) is operated at a lower pressure than reverse osmosis (RO), which has great advantages in terms of fouling control, maintenance, membrane cleaning, and potential energy reduction. In particular, since the membrane fouling layer of the forward osmosis process has a relatively loose and dispersed property, it is possible to control the membrane fouling by physical cleaning, unlike the reverse osmosis process. However, existing studies do not apply the proper cleaning flow rate for forward osmosis physical cleaning, and thus there is a limit that the optimal operation can not be performed. Therefore, this study aims to evaluate the justification of proper flow rate that can show high efficiency cleaning with economical energy amount. The membrane fouling experiments of the forward osmosis process were maintained at a circulating flow rate of 8.54 cm/s and the recovery rates were compared with the three cleaning flow rates. As a result of this experiment, it was confirmed that the 2 × speed cleaning showed the same efficiency as the water permeability recovery rate of the 3 × speed cleaning, and it was confirmed that the 2 × speed cleaning was an appropriate flow rate with high cleaning efficiency and economical SEC.

Improved Flux and Torque Estimators of a Direct Torque Controlled Interior PM Machine with Compensations for Dead-time Effects and Forward Voltage Drops

  • Sayeef, Saad;Rahman, M.F.
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.438-446
    • /
    • 2009
  • The performance of direct torque controlled (DTC) interior permanent magnet (IPM) machines is poor at low speeds due to a few reasons, namely limited accuracy of stator voltage acquisition and the presence of offset and drift components in the acquired signals. Due to factors such as forward voltage drop across switching devices in the three phase inverter and dead-time of the devices, the voltage across the machine terminals differ from the reference voltage vector used to estimate stator flux and electromagnetic torque. This can lead to instability of the IPM drive during low speed operation. Compensation schemes for forward voltage drops and dead-time are proposed and implemented in real-time control, resulting in improved performance of the space vector modulated DTC IPM drive, especially at low speeds. No additional hardware is required for these compensators.

Wind Tunnel Test of the Straight and Forward Swept Canards

  • Chung, Jin-Deog;Sung, Bong-Zoo;Lee, Jang-Yeon;Kim, Eung-Tai
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.19-25
    • /
    • 2003
  • A low speed wind tunnel test for the canard airplane model was conducted in KARI LSWT. To measure the required level of accuracy, the image system was applied for all elevator deflection and different canard incidence conditions. By doing so, the difference in aerodynamic characteristics between the forward swept and straight canards can be precisely evaluated, and the pros and cons of both canards arrangements can be discussed. Compared with both canard configurations at the same incidence angle setting, the straight canard has benefits in lift and drag, and the slope of pitching moment increases more moderately than the forward swept canard. The listed data and discussion would be useful to whom wants to design a canard airplane.

A Study on Steady-State Performance Simulation of Smart UAV Propulsion System (신개념 비행체 추진시스템의 정상상태 성능모사 기법 연구)

  • 공창덕;강명철;기자영;양수석;이창호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.38-44
    • /
    • 2003
  • In this study, a performance model of the smart UAV propulsion system with ducts, tip jets and variable main nozzle, which has flight capability of the rotary wing mode for the take-off/landing and low speed forward flight as well as the fixed wing mode for high speed forward flight, has been newly developed With the proposed model, steady-state performance analysis was performed at various flight modes such as rotary wing mode, fixed wing mode, compound ing mode and altitude as well as at flight speed conditions. In investigation of performance analysis. it was noted that the operational capability of the propulsion system was limited due to the duct losses depending on each flight mode, and the limitation with the altitude variation case had much greater than that with the flight speed variation case.