• Title/Summary/Keyword: Forward planning

Search Result 143, Processing Time 0.028 seconds

The usefulness of Forward IMRT for Head and Neck Cancer (두경부(Head & Neck)종양에서 Forward IMRT 유용성에 관한 고찰)

  • Baek Geum Mun;Kim Dae Sup;Park Kwang Ho;Kim Chung Man
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.41-52
    • /
    • 2003
  • I. Purpose The dose distribution in normal tissues and target lesions is very important in the treatment planning. To make the uniform dose distribution in target lesions, many methods has been used. Especially in the head and neck, the dose inhomogeneity at the skin surface should be corrected. Conventional methods have a limitation in delivering the enough doses to the planning target volume (PTV) with minimized dose to the parotid gland and spinal cord. In this study, we investigated the feasibility and the practical QA methods of the forward IMRT. II. Material and Methods The treatment plan of the forward IMRT with the partial block technique using the dynamic multi-leaf collimator (dMLC) for the patients with the nasopharyngeal cancer was verified using the dose volume histogram (DVH). The films and pinpoint chamber were used for the accurate dose verification. III. Results As a result of verifying the DVH for the 2-D treatment plan with the forward IMRT, the dose to the both parotid gland and spinal cord were reduced. So the forward IMRT could save the normal tissues and optimize the treatment. Forward IMRT can use the 3-D treatment planning system and easily assure the quality, so it is easily accessible comparing with inverse IMRT IV. Conclusion The forward IMRT could make the uniform dose in the PTV while maintaining under the tolerance dose in the normal tissues comparing with the 2-D treatment.

  • PDF

The Campus of University Earthquake Disaster Prevention Planning - The Research of Spatial Pattern Based on GIS

  • Mi, Shan;Piao, Yong-Ji;Zhang, Rui;Cho, Tae-Dong
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1213-1221
    • /
    • 2014
  • In the background of rapid urbanization and frequent earthquakes, earthquake disaster prevention planning has become an important topic of current research. Universities are irreplaceable disaster shelter, as they are public institutions with a lot of open space. This article puts forward the concept of "disaster prevention campus". With the refuge behavioral and psychological characteristics of people in the campus when the earthquake happens, it integrated uses GIS spatial analysis technique, takes Shandong Agricultural University as an example, and studies the spatial pattern of earthquake disaster prevention planning in campus from five aspects. The aspects include building distribution, population distribution, analysis of service radius, infrastructure configuration and choice of the optimal refuge path. On the basis of researches above, reform proposals and specific strategies are put forward to build the safe and harmonious disaster prevention campus.

Inverse Offset Method for Adaptive Cutter Path Generation from Point-based Surface

  • Kayal, Prasenjit
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • The inverse offset method (IOM) is widely used for generating cutter paths from the point-based surface where the surface is characterised by a set of surface points rather than parametric polynomial surface equations. In the IOM, cutter path planning is carried out by specifying the grid sizes, called the step-forward and step-interval distances respectively in the forward and transverse cutting directions. The step-forward distance causes the chordal deviation and the step-forward distance produces the cusp. The chordal deviation and cusp are also functions of local surface slopes and curvatures. As the slopes and curvatures vary over the surface, different step-forward and step-interval distances are appropriate in different areas for obtaining the machined surface accurately and efficiently. In this paper, the chordal deviation and cusp height are calculated in consideration with the surface slopes and curvatures, and their combined effect is used to estimate the machined surface error. An adaptive grid generation algorithm is proposed, which enables the IOM to generate cutter paths adaptively using different step-forward and step-interval distances in different regions rather than constant step-forward and step-interval distances for entire surface.

On the Selection of Demand Used in Planning for the Distribution Networks

  • Jun Geol, Baek
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.1
    • /
    • pp.135-146
    • /
    • 2004
  • This paper first addresses a distribution planning method on centrally controlled supply chain. The distribution channels are assumed to be network of arborescence form. For such distribution networks, this study proposes a distribution planning scheme when the demands for retail sites are provided for a given planning horizon. As the planning horizon rolls forward, for a new horizon, forecasted demand distributions of periods in the horizon are updated. An idea of controlling customer service level by the selection of demand to be used in the planning (Demand Used in Planning, DUP) from the forecasted values is also discussed.

Clinical Analysis of Inverse Planning for Radiosurgery ; Gamma Knife Treatment Plan Study (방사선 수술 역방향 치료계획 유용성 평가)

  • Jin, Seong Jin;Je, Jae Yong;Park, Cheol Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.343-348
    • /
    • 2015
  • The purpose of this study is a comparison of forward planning(FP) and inverse planning(IP) of a radiosurgery procedure. 10 patients of acoustic schwannoma MR image were used for treatment plan. FP-1,2 and IP were established under the same condition. FP and IP were compared by number of shot, conformity index(CI), paddic conformity index(PCI), gradiant index(GI) and treatment time. On average the treatment plan produced by IP tool provided an improved or similar CI, PCI, GI and reduced treatment time as compared to the FP (CI;FP-1:0.85, FP-2:0.86, IP:0.94, PCI;FP-1:0.79, FP-2:0.81, IP:0.78, GI;FP-1:2.94, FP-2:2.94, IP:3.01). The inverse planning system provides a clinically useful plan while reducing the planning time and treatment time.

Development of Planning Indicators in Rural Village for Realization of Low Carbon Society (저탄소사회 실현을 위한 농촌마을 계획지표 개발)

  • Kim, Eun-Ja;Ko, Ah-La;Lee, Jeung-Won;Kim, Sang-Bum
    • Journal of Korean Society of Rural Planning
    • /
    • v.17 no.1
    • /
    • pp.29-42
    • /
    • 2011
  • The Purpose of this study is to develop indicators for low carbon planning in rural village. We made two indicators for inland area and waterside area to consider regional disparities. To develop indicators, a draft of the indicators was estimated with collected research materials and 52 experts reviewed this draft three times with Modified Delphi Technique to check the validity and revise the draft. As a result, the inland indicators were settled with 4 domains 8 items 20 indicators and the waterside indicators were 4 domains 8 items 22 indicators. The final indicators will be used to realize low carbon rural village planning in future which the government is pushing forward with construction of six-hundred low carbon green village.

An Influence of the Frictional Condition on Material Flow in Forward/Backward Combined Extrusion Process (전/후방 복합 압출공정에서 마찰조건이 재료 유동에 미치는 영향)

  • Kim, M.T.;Noh, J.H.;Hwang, B.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.433-436
    • /
    • 2009
  • This study is concerned with an effect of frictional condition in a forward/backward combined extrusion process. Generally, the material flow of the billet is influenced by the corners of the die cavity, the ratio in reduction in area, and thickness ratio of backward can thickness to forward can thickness. In addition, the frictional condition in contact area between the billet and the punch/die also affect the material flow. This paper investigated the effect of frictional condition for variable friction factors. The FEM simulation has been carried out in order to examine the effect of frictional condition. Deformation patterns and flow characteristics were examined in terms of design parameters such as extruded length ratio etc. Die pressure exerted on the die-workpiece interface is calculated by the simulation results and analyzed for safe tooling. Therefore the numerical simulation works provide a combined extrusion process of stable cold forging process planning to avoid the severe damage on the tool.

  • PDF

Surgical Planning in Deformity Correction Osteotomies using Forward Kinematics and Inverse Kinematics (정기구학 및 역기구학을이용한하지 교정절골술 계획 생성)

  • Jeong, Jiwon;Lee, Seung Yeol;Youn, Kibeom;Park, Moon Seok;Lee, Jehee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • Patients with cerebral palsy or arthritis have deformities in lower limb which cause unstable gait or posture and pains. Surgeons perform a deformity correction osteotomy with surgical plan. But sometimes they find the unexpected angular or rotational deformation after surgery. The problems are that there is no method to predict the result of a surgical plan and also there are so many factors to must consider in surgical planning step such as clinical measurements, rotation angle, wedge angle, morphology of lower limb, etc. This paper presents new methods for planning the deformity correction osteotomy efficiently. There are two approaches based on the 3D mesh model and the accurate assessment of the patient's lower limb. One is the manual pre-simulation of surgery using forward kinematics. And the other is the automatic surgical planning using inverse kinematics and nonlinear optimization. Using these methods, we can predict and verify the results of various surgical treatments and also we can find a more effective surgical plan easily compared to conventional methods.

Finite Element Analysis and Process Planning about the Auto Transmission Solenoid Valve using of Multi-Former (다단-포머를 이용한 오토트랜스 미션용 솔레노이드 밸브 공정설계 및 유한요소해석)

  • Park, Chul-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.97-103
    • /
    • 2009
  • The process design of forward Extrusion and Upsetting of Axi-symmetric part has been studied in this paper. During the cold forging product; auto transmission Solenoid Valve part, the defects such as folding and under-fill can be appeared by the improperly controlled metal flow. In this study, to reduce the folding and under-fill the design of experiments has been used to find out the significant design variables in the design of forging process. This paper deals with an Process Planning with which designer can determine operation sequences even after only a little experience in Process Planning of Multi-Former products by multi-stage former working. The approach is based on knowledge-based rules, and a process knowledge-base consisting of design rules is built. Based on the systematic procedure of process sequence design, the forming operation of cold forged auto transmission Solenoid Valve part is analyzed by the commercial Finite Element program, DEFORM/2D.

Kinematic model, path planning and tracking algorithms of 4-wheeled mobile robot 2-degree of freedom using gaussian function (4-구륜 2-자유도 이동 로보트의 기구학 모델과 가우스함수를 이용한 경로설계 및 추적 알고리즘)

  • 김기열;정용국;박종국
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.12
    • /
    • pp.19-29
    • /
    • 1997
  • This paper presents stable kinematic modeling and path planning and path tracking algorithms for the poisition control of 4-wheeled 2-d.o.f(degree of freedom) mobile robot. We drived the actuated inverse and sensed forward solution for the calculation of actuator velocity and robot velocities. the deal-reckoning algorithm is introduced to calculate the position of WMR in real time. The gaussian functions are applied to control and to design the smooth orientation angle of WMR and the path planning algorithm for obstacle avoidance is prosed. We composed feedback control system to compensate for error because of uncertainty kinematic modeling and measurement noise. The simulation resutls show that the proposed kinematkc modeling and path planning and feedback control algorithms are useful.

  • PDF