• Title/Summary/Keyword: Forward gait

Search Result 75, Processing Time 0.02 seconds

Energy-Efficient Reference Walking Trajectory Generation Using Allowable ZMP (Zero Moment Point) Region for Biped Robots (2족 보행 로봇을 위한 허용 ZMP (Zero Moment Point) 영역의 활용을 통한 에너지 효율적인 기준 보행 궤적 생성)

  • Shin, Hyeok-Ki;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1029-1036
    • /
    • 2011
  • An energy-efficient reference walking trajectory generation algorithm is suggested utilizing allowable ZMP (Zero-Moment-Point) region, which maxmizes the energy efficiency for cyclic gaits, based on three-dimensional LIPM (Linear Inverted Pendulum Model) for biped robots. As observed in natural human walking, variable ZMP manipulation is suggested, in which ZMP moves within the allowable region to reduce the joint stress (i.e., rapid acceleration and deceleration of body), and hence to reduce the consumed energy. In addition, opimization of footstep planning is conducted to decide the optimal step-length and body height for a given forward mean velocity to minimize a suitable energy performance - amount of energy required to carry a unit weight a unit distance. In this planning, in order to ensure physically realizable walking trajectory, we also considered geometrical constraints, ZMP stability condition, friction constraint, and yawing moment constraint. Simulations are performed with a 12-DOF 3D biped robot model to verify the effectiveness of the proposed method.

(Community Care Preparation) Identification of Musculoskeletal Problems for the Elderly in Rural Areas and Presentation of Regional and Inter-university Health Management Models

  • Sung-hak Cho
    • The Journal of Korean Physical Therapy
    • /
    • v.35 no.2
    • /
    • pp.37-42
    • /
    • 2023
  • Purpose: Compared to cities, rural areas are in a medical blind spot and face difficulties in accessing medical services due to inconvenient transportation facilities, lack of medical facilities, and the heavy burden of medical expenses. This study was carried out to identify the problems relating to the musculoskeletal system of the elderly in rural and fishing villages, which are medically vulnerable areas, and sought to present a regionally differentiated healthcare model. Methods: The study was conducted in 80 elderly people in two rural villages and two fishing villages after seeking inputs regarding medically vulnerable groups in the Gyeongnam Province. Postural balance and muscle flexibility were assessed and postural evaluation was conducted to identify musculoskeletal problems and gait stability. Strength and range of motion for each body segment were assessed for evaluating functional motion. Results: The elderly in both rural areas showed forward head posture characteristics. The strength level of the elderly in both rural areas was higher than the average, but their flexibility and balance ability were lower than the average. Conclusion: The musculoskeletal problems of the elderly in rural and fishing villages in this study did not show regional characteristics according to the area of residence. However, overall flexibility and balance ability appeared to be reduced. Therefore, a new management model connecting the region and the university is necessary in preparation for the coming era of community care.

A Case Report on the Immediate Effects of Cytoskeletal Manual Therapy on Pain, Muscle Thickness, and Pressure Pain Threshold in a Patient with Scoliosis

  • Hyunjoong Kim;Dajeong Kim
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.1
    • /
    • pp.19-25
    • /
    • 2023
  • Objective: Patients with scoliosis complain of various symptoms such as muscle imbalance, dysfunction, back pain, abnormal posture and gait abnormality. The most basic treatment for scoliosis is to observe the progress based on conservative treatment. Therefore, in this case report, the effect of cytoskeletal manual therapy (CMT), a soft tissue mobilization technique, on pain intensity, muscle thickness, and pressure pain threshold (PPT) in a patient with scoliosis was investigated. Design: A case report Methods: A 25-year-old male diagnosed with scoliosis visited the Neuromusculoskeletal Science Laboratory with chronic back pain. In the laboratory, scoliosis was confirmed through the X-ray image used for his diagnosis, and it was confirmed again through Adam's forward bending test. Pain, pressure pain threshold and muscle thickness were measured to compare the immediate effects of CMT applied in the laboratory for 40 minutes. Treatments were visited two weeks after the first visit and outcome measures were assessed after a total of two visits. Results: After receiving CMT up to the second session, the pain intensity decreased by 4 points and the screening angle decreased by 15 degrees. Muscle thickness decreased in all but 10 mm on the dominant side of the thoracic spine. All of the PPTs increased, and the greatest increase was 3.1 lb on the dominant side of the thoracic spine. Conclusions: CMT showed positive improvement in pain during trunk flexion, spinal curvature, muscle imbalance, and pressure pain, which is considered as an ancillary treatment option for scoliosis management.

Surgical Planning in Deformity Correction Osteotomies using Forward Kinematics and Inverse Kinematics (정기구학 및 역기구학을이용한하지 교정절골술 계획 생성)

  • Jeong, Jiwon;Lee, Seung Yeol;Youn, Kibeom;Park, Moon Seok;Lee, Jehee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • Patients with cerebral palsy or arthritis have deformities in lower limb which cause unstable gait or posture and pains. Surgeons perform a deformity correction osteotomy with surgical plan. But sometimes they find the unexpected angular or rotational deformation after surgery. The problems are that there is no method to predict the result of a surgical plan and also there are so many factors to must consider in surgical planning step such as clinical measurements, rotation angle, wedge angle, morphology of lower limb, etc. This paper presents new methods for planning the deformity correction osteotomy efficiently. There are two approaches based on the 3D mesh model and the accurate assessment of the patient's lower limb. One is the manual pre-simulation of surgery using forward kinematics. And the other is the automatic surgical planning using inverse kinematics and nonlinear optimization. Using these methods, we can predict and verify the results of various surgical treatments and also we can find a more effective surgical plan easily compared to conventional methods.

Differences in Angle of the Lower Extremities and Electromyography of Elderly Women Experienced a Fall (낙상경험 여성노인의 하지 분절 각도와 근전도 차이)

  • Jeon, Kyoung-Kyu;Park, Kwang-Dong;Park, Se-Hwan;Kang, Young-Seok;Kim, Dae-Geun
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.245-255
    • /
    • 2009
  • The purpose of this study is to analyzed the coordination of lower limb of elderly women who experienced a fall to present basic information for sports science and to deal with the factors that make elderly women fall more effectively. Twenty elderly women were divided into two groups of 10. The mechanisms of balancing lower limb during walk and differences were compared and analyzed using motion analysis and electromyography. The findings of this study are as follows. The first, walking patterns of these women were unstable as their hip joints did not provide sufficient support because of aging. Second, the left and right knee joints showed different walking patterns. The third, the motions of ankle joints became abnormal with increased age. As for the activation of major lower limb muscles, rectus fermois muscle and biceps fermois muscle contracted more to prevent the bending of knees and moved forward while anterior tibial muscle and inner gastrocnemius muscle were demanded highly during walk and the rate of plantar flexion was reduced.