• Title/Summary/Keyword: Forward Momentum

Search Result 41, Processing Time 0.031 seconds

A Study on the Forward Momentum of a Soft Recoil System (연식주퇴 시스템의 전방운동량에 관한 연구)

  • Park, Sun-Young;Bae, Jae-Sung;Hwang, Jai-Hyuk;Kang, Kuk-Jeong;Ahn, Sang-Tae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.976-981
    • /
    • 2010
  • A soft-recoil or FOOB (Fire-Out-Of-Battery) system can reduce the recoil force considerably. Its firing sequency is different from that of a conventional or FIB (Fire-In-Battery) system. In FOOB system, the gun is latched and preloaded in its battery position prior to firing. When unlatched, the gun is accelerated to the forward direction and then the forward momentum of the recoil part is generated. Since this momentum reduces the recoil impulse, the recoil force will decrease significantly. When designing the soft-recoil system it is important to design the forward momentum profile of a recoiling part. In the present study, the method to determine the forward momentum has been studied and its optimum value has been obtained theoretically. The numerical simulation of the soft-recoil system is performed to show that the present soft-recoil system works functionally well.

Analysis of the Angular Momentum for the Bar Clearance Motion in the Fosbury Flop (높이뛰기의 바 넘기 동작을 위한 각운동량 분석)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.119-134
    • /
    • 2004
  • The purpose of this study was to analyze the angular momentum characteristics of the Fosbury Flop high jump and the role of the body segments for the production of 3 angular momentum components. The subjects were three male jumpers who were former Korean national team players. Their jumping motions were analyzed using the DLT method of three-dimensional cinematography. The conclusions were as follows. 1. All the forward angular momentum needed to clear the bar was created in the take-off phase. Take-off leg was the great contributor of the forward angular momentum. On the other hand, free leg produced large opposite angular momentum. 2. All subject had some lateral angular momentum before the take-off phase. Head and free leg had major contribution to the lateral angular momentum production. Take-off leg produced opposite angular momentum. 3. All subject had some twisting angular momentum, which make the back of the athlete him to the bar, before the take-off phase. Free leg was the major contributor of the twisting angular momentum. Head and trunk was the second contributor of the twisting angular momentum. 4. Total angular momentum needed to clear the bar had no significant correlation to the jumping height. 5. Subject who made excessive angular momentum showed different pattern of angular momentum production and had a poor record compared to other subject.

The Mechanical Analysis of the Hand spring forward and Salto forward straight with 3/2 Turn on the Vault (도마 손 짚고 몸펴 앞 공중 돌아 540도 비틀기의 운동역학적 분석)

  • Yeo, Hong-Chul;Ryu, Jae-Kyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.13-26
    • /
    • 2004
  • The purpose of this study was to investigate the differences of the kinematical and the kinetical factors that calculated from preflight to preflight of salto forward straight 3/2 turn motion between skillers and less-skillers. four S-VHS video cameras operating at 60Hz were used to record the performances. Five elite male gymnasts were participated in this study as subjects. Three-dimensional coordinates of 21 body landmarks during each trial were collected using a Direct Linear Transformation method. The raw 3-D coordinates of the 21 body landmarks were smoothed using a second order lowpass, recursive Butterworth digital filter and a cutoff frequency of 10Hz. Load cells attached on the beneath of a board were used to attain the kinetic variables. It was found that the more angular momentum in the longitudinal axis, the less vertical velocity and these angular momentum effected the height of peak in the preflight. Also, it was revealed that the larger angular momentum in the medio-lateral axis was rather than it in the longitudinal axis to increase vertical height and rotation force of the body. For the reaction force of springboard, the vertical and the horizontal reaction force were 16.52BW and 3.45BW, respectively. It was found that the higher value of the vertical reaction force induced the faster vertical velocity and the higher an ar momentum. of the whole body center of gravity.

Characteristics of Products in the Reaction 40 MeV/nucleon $^{14}N+Ag$

  • Chung, Yong-Hee;Porile, N. T.
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.971-975
    • /
    • 1994
  • Cross sections and recoil properties have been measured for the fragments produced in the interaction of silver with 40 MeV/nucleon $^{14}N$ ions using off-line ${\gamma}$-ray spectroscopy. The data were used to obtain the isobaric-yield distribution, the mass yield distribution, and the fractional momentum transfer. The values of forward-to-backward ratios were measured to be very large, indicating that substantial momentum transfer occurs at this energy regime. The results are compared with other studies of the interaction of silver with intermediate-energy heavy ions.

Semi-Lagrangian flow analysis of Viscoelastic fluid using Objective Time Integration (Semi Lagrangian 방법과 Objective Time Integration을 이용한 점탄성 유동 해석)

  • Kang, S.Y.;Kim, S.M.;Lee, W.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.99-104
    • /
    • 2006
  • A semi-Lagrangian finite element scheme with objective time stepping algorithm for solving viscoelastic flow problem is presented. The convection terms in the momentum and constitutive equations are treated using a quasi-monotone semi-Lagrangian scheme, in which characteristic feet on a regular grid are traced backwards over a single time-step. Concerned with the generalized midpoint rule type of algorithms formulated to exactly preserve objectivity, we use the geometric transformation such as pull-back, push-forward operation. The method is applied to the 4:1 planar contraction problem for an Oldroyd B fluid for both creeping and inertial flow conditions.

  • PDF

The Kinetic Analysis K-study of Roche Technique in Horse Vaulting (도마 Roche 기술의 운동역학적 사례분석)

  • Yeo, Hong-Chul;Ryu, Jae-Kyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.201-207
    • /
    • 2008
  • The purpose of this study was to examine the Roche technique performed by three male subjects in 2003 Taegu World Students Game. Conclusions are as followed. If the angular momentum was increased to counter-clockwise on voulting, the momentum acted like an interrupting factor of body spinning force. The biggest body angle was at VTD phase and the smallest was at BTO phase. At the phase of contacting on vaulting board and taking off from the vaulting board, the biggest personal angle difference between VTD and BTO was found. As the Roche technique was needed not only to fly high but also to increase body spinning rate, the projection angles of Roche technique were showed smaller than those of Cuervo technique. The angular velocity was peak during 2 times forward turn phase. The angular momentum was influenced by angular velocity from BTO and VTD phase.

Prediction for Rotor Aerodynamics of Quadcopter Type Unmanned Aerial Vehicle Considering Gust and Flight Conditions (비행 조건의 영향을 고려한 쿼드콥터형 무인비행체의 로터 공력 특성 예측)

  • Park, SunHoo;Eun, WonJong;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.833-844
    • /
    • 2018
  • This paper aims to predict the aerodynamic characteristics of individual rotor for the gust and flight conditions. Transformation procedure into the wind frame is conducted to analyze the gust. Hover, forward, and climb flight conditions of an individual rotor are analyzed using the blade element momentum theory (BEMT) considering the rigid blade flapping motion. XFOIL is used to derive aerodynamic results. Validation for hover, forward flight, and climb conditions are conducted using the present BEMT. In addition, a static experimental environment is constructed. The experimental results and the present BEMT are compared and verified.

Effect of Walking Speed on Lower Extremity Internal and External Rotation While Turning 90 Degrees (90도 회전 시 보행속도가 하지의 내외 회전에 미치는 효과)

  • Yoon, Jang-Whon
    • Physical Therapy Korea
    • /
    • v.8 no.4
    • /
    • pp.1-16
    • /
    • 2001
  • 회전(turning)은 보행 중 방향을 바꾸는 운동 기술(motor skill)이고, 회전 전략(turning strategy)은 회전을 완수하는데 사용되는 일반적 행동 전형(generalized movement pattern)이다. 회전에 대한 보행속도의 영향은 분명하지 않다. 이 연구의 목적은 보행속도의 돌기 전략에 대한 영향을 분석하고 보행속도의 하지 내외 회전(internal and external rotation)에 대한 영향을 분석하는 것이다. 건강한 젊은 성인 15명이 이 연구에 자발적으로 참여하였다. 맥리플렉스 측정 장치(MacReflex measurement system)가 동작 분석(motion analysis)을 위해 사용되었다. 각각의 자원자들은 보행 중 90도 왼쪽으로 회전을 10회씩 완수하였다. 각각의 시도마다 보행속도를 다르게 하기 위해서 세 가지의 다른 요구들(slow, regular, fast)이 임의적으로 주어졌고 각각의 실제 보행속도가 자원자의 무게중심 변화에 따라 구해졌고 요구별 평균이 구해졌다. 회전 안쪽 발의 스핀(in side foot spin)은 보행속도가 증가함에 따라 증가했지만, 회전 바깥쪽 발의 스핀(out side foot spin)은 보행속도와 상관이 없었다. 하지의 내외 회전은 보행속도와는 상관이 없었지만, 같은쪽 발의 스핀과는 역관계가 있었다. 회전은 발 스핀이 있는 돌기와 발 스핀이 없는 돌기로 구분되는 것이 합당한 듯 하다. 제한된 시간과 공간 내에서 스핀은 보행속도가 빨라질수록 몸의 전방 운동량(forward momentum)에서 몸의 전방 운동량(forward momentum)으로의 전환이 스핀이 없는 회전 시보다 효율적이다. 고관절의 내외 회전 근육들은 회전전략에 상관없이 회전되는 동안 몸의 역학(body mechanics)을 조절하는데 중요한 역할을 맡고 있는 것으로 보인다. 앞으로 회전 시 몸의 생체 역학적 그리고 신경 근육적 기전들(biomechanical and neuromuscular mechanisms)을 밝히는 연구들이 필요하다.

  • PDF

The Biomechanical Analysis of the Cuervo Salto Forward Straight Vaults with Twists (도마 몸 펴 쿠에르보 비틀기 동작 분석)

  • Lim, Kyu-Chan
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.143-151
    • /
    • 2005
  • This study was conducted to investigate the technical factors of Cuervo forward straight vaults with single twist, single and half twists, and double twists actually performed by three execellent male gymnasts participated in artistic gymnastics competition of 2003 summer Universiade in Daegu and the 85th National Sports Festival in Cheongju. To accomplish the research goals the Cuervo vaults of three gymnasts were filmed by using three digital camcorders set by 60 Hz, and data were collected through the DLT method of three dimensional cinematography. The kinematic and kinetic variables as each phasic time, CM displacement velocity, release angle inclination angle hip joint angle landing angle, average horse reaction force average moment arm average torque, whoe body's total remote local angular momentum were analyzed, so the following conclusions were reached. Generally to perform the better Cuervo vault, a gymnast should touch down on the board with the great horizontal velocity of the whole body through the fast run-up, and touch down on the horse by decreasing the horizontal displacement of the whole body during the preflight, so raise CM height gradually within a short horse contact time. He should increase the horse reaction force through checking the horizontal velocity of the whole body effectively and the inclination angular displacement of the handstand, if so he can have the large vertical velocity of the whole body. By using the acquired the velocity and the angular momentum of the whole body, he can vault himself higher and twist sufficiently, then he can get better if the body could be tilted by swinging both arms and perform the cat twist with a little flexions at hip joints. According to the above outcomes we can judge that the best athletes is LuBin, the better is YTY, and the next is JSM.

Effects of Reagent Rotation on Stereodynamics Information of the Reaction O(1D)+H2 (v = 0, j = 0-5) → OH+H: A Theoretical Study

  • Kuang, Da;Chen, Tianyun;Zhang, Weiping;Zhao, Ningjiu;Wang, Dongjun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2841-2848
    • /
    • 2010
  • Quasiclassical trajectory (QCT) method has been used to investigate stereodynamics information of the reaction $O(^1D)+H_2{\rightarrow}\;OH$+H on the DK (Dobbyn and Knowles) potential energy surface (PES) at a collision energy of 23.06 kcal/mol, with the initial quantum state of reactant $H_2$ being set for v = 0 (vibration quantum number) and j = 0-5 (rotation quantum number). The PDDCSs (polarization dependent differential cross sections) and the distributions of P($\theta_r$), P($\phi_r$), P($\theta_r$, $\phi_r$) have been presented in this work. The results demonstrate that the products are both forward and backward scattered. As j increases, the backward scattering becomes weaker while the forward scattering becomes slightly stronger. The distribution of P($\theta_r$) indicates that the product rotational angular momentum j' tends to align along the direction perpendicular to the reagent relative velocity vector k, but this kind of product alignment is found to be rather insensitive to j. Furthermore, the distribution of P($\phi_r$) indicates that the rotational angular momentum vector of the OH product is preferentially oriented along the positive direction of y-axis, and such product orientation becomes stronger with increasing j.