• Title/Summary/Keyword: Forward Loading Simulation

Search Result 10, Processing Time 0.022 seconds

A CAE Approach for Net-Shape Automobile Stamping Components of Aluminum Alloy (자동차용 알루미늄 합금 정형의 스탬핑 부품 성형을 위한 CAE 기법 개발)

  • Choi, Han-Ho;Ku, Tae-Wan;Hwang, Sang-Moon;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.164-171
    • /
    • 1999
  • An optimum blank design technology is required for near-net of net-shape cold forming using sheets. Originally, the backward tracing scheme has been developed for preform design in bulk forming, and applied to several forming processes successfully. Its key concept is to trace backward from the final desirable configuration to an intermediate preform of initial blocker. A program for initial blank design in sheet forming which contains the capabilities of forward loading simulation by the finite element method and backward tracing simulation, has been developed and proved the effectiveness by applying to a square cup stamping process. In the blank design of square cup stamping, the backward tracing program can produce an optimum blank configuration which forms a sound net-shape cup product without machining after forming. Another general application appears in the blank design of a cup stamping with protruding flanges, one of typical automobile components. The blank configurations derived by backward tracing simulation have been confirmed by a series of loading simulations. The approach or decision of an initial blank configuration presented in this study will be a milestone in fields of sheet forming process design.

  • PDF

Development of the Backward Tracing Scheme of FEM and Its Application to Initial Blank Design in Sheet Metal Forming (유한요소법을 이용한 역추적기법 개발 및 판재성형의 초기블랭크 형상설계에 적용)

  • 최한호;강경주;구태완;임학진;황상문;강범수
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.348-355
    • /
    • 2000
  • The backward tracing scheme(BWT) of the finite element method has been extended lot the design of sheet blank in three-dimensional deformation. Originally the scheme was developed for preform design in bulk forming, and applied to several forming processes successfully. Its key concept is to trace backward from the final desirable configuration to an intermediate preform or initial blocker. A program for initial blank design in sheet forming which contains the capabilities of forward loading simulation by the finite element method and backward tracing simulation, has been developed and proved the effectiveness by applying to a square cup stamping process. In the blank design of square cup stamping, the backward tracing program can produce an optimum blank configuration which forms a sound net-shape cup product without machining after forming. For the confirmation of the analytic result derived from the backward tracing simulations as well as forward loading simulations, a series of experiment were carried out. The experiments include the first trial sheet forming process with a rectangular blank, an improved process with a modified blank preform and the final process with an optimum blank resulted from the backward tracing scheme. The experiments show that the backward tracing scheme has been implemented successfully in blank design of sheet metal forming.

  • PDF

A CAE Approach for Net-Shape Automobile Stamping Components of Aluminum Alloy (자동차용 알루미늄 합금 정형의 스탬핑 부품 성형을 위한 CAE기법개발)

  • 최한호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.45-48
    • /
    • 1999
  • A program for initial blank design in sheet forming which contains the capabilities of forward loading simulation by the finite element method and backward tracking simulation has been developed and proved the effectiveness by applying to a square cup stamping process. In the blank design of square cup stamping the backward tracing program can produce an optimum blank configuration which forms a sound net-shape cup produce without machining after forming. Another general application appears in the blank design of a cup stamping with protruding flanges one of typical automobile components. The blank configurations derived by backward tracing simulation have been confirmed by a series of loading simulations. The approach for decision of an initial blank configuration presented in this study will be a milestone in fields of sheet forming process design.

  • PDF

Three-dimensional numerical simulation and cracking analysis of fiber-reinforced cement-based composites

  • Huang, Jun;Huang, Peiyan
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.327-341
    • /
    • 2011
  • Three-dimensional graphic objects created by MATLAB are exported to the AUTOCAD program through the MATLAB handle functions. The imported SAT format files are used to produce the finite element mesh for MSC.PATRAN. Based on the Monte-Carlo random sample principle, the material heterogeneity of cement composites with randomly distributed fibers is described by the WEIBULL distribution function. In this paper, a concept called "soft region" including micro-defects, micro-voids, etc. is put forward for the simulation of crack propagation in fiber-reinforced cement composites. The performance of the numerical model is demonstrated by several examples involving crack initiation and growth in the composites under three-dimensional stress conditions: tensile loading; compressive loading and crack growth along a bimaterial interface.

An energy-efficiency approach for bidirectional amplified-and-forward relaying with asymmetric traffic in OFDM systems

  • Jia, Nianlong;Feng, Wenjiang;Zhong, Yuanchang;Kang, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4087-4102
    • /
    • 2014
  • Two-way relaying is an effective way of improving system spectral efficiency by making use of physical layer network coding. However, energy efficiency in OFDM-based bidirectional relaying with asymmetric traffic requirement has not been investigated. In this study, we focused on subcarrier transmission mode selection, bit loading, and power allocation in a multicarrier single amplified-and-forward relay system. In this scheme, each subcarrier can operate in two transmission modes: one-way relaying and two-way relaying. The problem is formulated as a mixed integer programming problem. We adopt a structural approximation optimization method that first decouples the original problem into two suboptimal problems with fixed subcarrier subsets and then finds the optimal subcarrier assignment subsets. Although the suboptimal problems are nonconvex, the results obtained for a single-tone system are used to transform them to convex problems. To find the optimal subcarrier assignment subsets, an iterative algorithm based on subcarrier ranking and matching is developed. Simulation results show that the proposed method can improve system performance compared with conventional methods. Some interesting insights are also obtained via simulation.

Process Design in Coining by Three-Dimensional Backward Tracing Scheme of Rigid-Plastic Finite Element Method (강-소성 유한요소법의 3차원 역추적 기법을 적용한 코이닝 공정설계)

  • 최한호;변상규;강범수
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.408-415
    • /
    • 1997
  • The backward tracing scheme of the finite element analysis, which is counted to be unique and useful for process design in metal forming, has been developed and applied successfully in industry to several metal forming processes. Here the backward tracing scheme is implemented for process design of three-dimensional plastic deformation in metal forming, and it is applied to a precision coining process. The contact problem between the die and workpiece has been treated carefully during backward tracing simulation in three-dimensional deformation. The results confirm that the application of the developed program implemented with backward tracing scheme of the rigid plastic finite element leads to a reasonable initial piercing hole configuration. It is concluded that three-dimensional extension of the scheme appears to be successful for industrial applications.

  • PDF

ROBUST CONTROLLER DESIGN FOR IMPROVING VEHICLE ROLL CONTROL

  • Du, H.;Zhang, N
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.445-453
    • /
    • 2007
  • This paper presents a robust controller design approach for improving vehicle dynamic roll motion performance and guaranteeing the closed-loop system stability in spite of vehicle parameter variations resulting from aging elements, loading patterns, and driving conditions, etc. The designed controller is linear parameter-varying (LPV) in terms of the time-varying parameters; its control objective is to minimise the $H_{\infty}$ performance from the steering input to the roll angle while satisfying the closed-loop pole placement constraint such that the optimal dynamic roll motion performance is achieved and robust stability is guaranteed. The sufficient conditions for designing such a controller are given as a finite number of linear matrix inequalities (LMIs). Numerical simulation using the three-degree-of-freedom (3-DOF) yaw-roll vehicle model is presented. It shows that the designed controller can effectively improve the vehicle dynamic roll angle response during J-turn or fishhook maneuver when the vehicle's forward velocity and the roll stiffness are varied significantly.

Feasibility Study on Three-Dimensional Backward Tracing Scheme of Rigid-Plastic Finite Element Analysis (강-서성 유한요소 해석에서의 3차원 역추적 기법에 관한 연구)

  • 이진희;강범수;김병민
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.267-281
    • /
    • 1995
  • Preform design is one of the critical fields in metal forming. The finite element method(FEM) has been effective in designing preforms and process sequence, for which the backward tracing scheme of the rigid-plastic FEM has been explored. In this work a program using the backward tracing scheme by the rigid-plastic FEM is developed for three-dimensional plastic deformation, which is an extension of the scheme from two-dimensional cases. The calculation of friction between workpiece and die, and handling of boundary conditions during backward tracing require sophisticated treatment. The developed program is applied to upsetting of a rectangular block and to side pressing of a cylindrical workpiece. The results of the two applications show feasibility of the program on three-dimensional plastic deformation.

  • PDF

Nonlinear time-varying analysis algorithms for modeling the behavior of complex rigid long-span steel structures during construction processes

  • Tian, Li-Min;Hao, Ji-Ping
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1197-1214
    • /
    • 2015
  • There is a great difference in mechanical behavior between design model one-time loading and step-by-step construction process. This paper presents practical computational methods for simulating the structural behavior of long-span rigid steel structures during construction processes. It introduces the positioning principle of node rectification for installation which is especially suitable for rigid long-span steel structures. Novel improved nonlinear analytical methods, known as element birth and death of node rectification, are introduced based on several calculating methods, as well as a forward iteration of node rectification method. These methods proposed in this paper can solve the problem of element's 'floating' and can be easily incorporated in commercial finite element software. These proposed methods were eventually implemented in the computer simulation and analysis of the main stadium for the Universiade Sports Center during the construction process. The optimum construction scheme of the structure is determined by the improved algorithm and the computational results matched well with the measured values in the project, thus indicating that the novel nonlinear time-varying analysis approach is effective construction simulation of complex rigid long-span steel structures and provides useful reference for future design and construction.

High PSRR Low-Dropout(LDO) Regulator (높은 PSRR을 갖는 Low-Dropout(LDO) 레귤레이터)

  • Kim, In-Hye;Roh, Jeong-Jin
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.318-321
    • /
    • 2016
  • As IoT industry are growing fast, The importance of power management system is also being magnified. CMOS High power-supply rejection ratio(PSRR) Low-dropout(LDO) regulator is achieved by the proposed ripple Subtractor, Feed-forward capacitor and OTA in this paper. The LDO is implemented in $0.18-{\mu}m$ CMOS technology. With the proposed structures, in the maximum loading of 40mA, Simulation result achieves PSRR of -73.4dB at 500kHz and PSRR better than -40dB when frequency is below 10MHz with $6.8-{\mu}F$ output capacitor.