• Title/Summary/Keyword: Forward Error Correction.

Search Result 228, Processing Time 0.029 seconds

Block Turbo Codes for High Order Modulation and Transmission Over a Fast Fading Environment (고차원변조 방식 및 고속 페이딩 전송 환경을 위한 블럭터보부호)

  • Jin, Xianggunag;Kim, Soo-Young;Kim, Won-Yong;Cho, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.420-425
    • /
    • 2012
  • A forward error correction (FEC) coding techniques is one of time diversity techniques with which the effect of channel impairments due to noise and fading are spreaded over independently, and thus the performance could be improved. Therefore, the performance of the FEC scheme can be maximized if we minimize the correlation of channel information across over a codeword. In this paper, we propose a block turbo code with the maximized time diversity effect which may be reduced due to utilization of high order modulation schemes and due to transmission over a comparatively fast fading environment. Especially, we propose a very simple formula to calculate the address of coded bit allocation, and thus we do not need any additional outer interleavers, i.e., inter-codeword interleavers. The simulation resuts investigated in this paper reveal that the proposed scheme can provide the performance gain of more than a few decibels compared to the conventional schemes.

Turbo-coded STC schemes for an integrated satellite-terrestrial system for cooperative diversity (협동 다이버시티 이득을 위한 위성-지상간 통합망에서의 터보 부호화된 시공간 부호)

  • Park, Un-Hee;Kim, Soo-Young;Kim, Hee-Wook;Ahn, Do-Seob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.62-70
    • /
    • 2010
  • In this paper, we evaluate the performance of various diversity techniques which can contribute to provide efficient multimedia broadcasting services via hybrid/integrated satellite and terrestrial network. Space-time coding (STC) can achieve the diversity gain in a multi-path environment without additional bandwidth requirement. Recent study results reported that satellite systems can achieve high diversity gains by appropriate utilization of STC and/or forward error correction schemes. Based on these previous study results, we present various cooperative diversity techniques by combining STC and rate compatible turbo codes in order to realize the transmit diversity for the mobile satellite system. The satellite and several terrestrial repeaters operate in unison to send the encoded signals, so that receiver may realize diversity gain. The results demonstrated in this paper can be utilized in future system implementation.

A Design and Implementation of Digital Vessel Context Diagnosis System Based on Context Aware (상황 인식 기반 해양 디지털 선박 상황 진단 시스템 구현 및 설계)

  • Song, Byoung-Ho;Choi, Myeong-Soo;Kwon, Jang-Woo;Lee, Sung-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6B
    • /
    • pp.859-866
    • /
    • 2010
  • Digital vessels can occur large a disaster at sea because vessels in fire and collision in case of certain unforeseen circumstances. In this paper, We propose digital vessel context monitoring system through risk analysis. We propose environment information analysis system using wireless sensor that have to acquire marine environment and context of marine digital vessel. For conducting simulation, we chose 300 data sets to train the neural network. As a result, we obtained about 96% accuracy for fire risk context and we obtained 88.7% accuracy for body of vessel risk context. To improve the accuracy of the system, we implement a FEC (Forward Error Correction) block. We implemented digital vessel context monitoring system that transmitted to diagnosis result in CDMA.

A SPEC-T Viterbi decoder implementation with reduced-comparison operation (비교 연산을 개선한 SPEC-T 비터비 복호기의 구현)

  • Bang, Seung-Hwa;Rim, Chong-Suck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.7 s.361
    • /
    • pp.81-89
    • /
    • 2007
  • The Viterbi decoder, which employs the maximum likelihood decoding method, is a critical component in forward error correction for digital communication system. However, lowering power consumption on the Viterbi decoder is a difficult task since the number of paths calculated equals the number of distinctive states of the decoder and the Viterbi decoder utilizes trace-back method. In this paper, we propose a method which minimizes the number of operations performed on the comparator, deployed in the SPEC-T Viterbi decoder implementation. The proposed comparator was applied to the ACSU(Add-Compare-Select Unit) and MPMSU(Minimum Path Metric Search Unit) modules on the decoder. The proposed ACS scheme and MPMS scheme shows reduced power consumption by 10.7% and 11.5% each, compared to the conventional schemes. When compared to the SPEC-T schemes, the proposed ACS and MPMS schemes show 6% and 1.5% less power consumption. In both of the above experiments, the threshold value of 26 was applied.

Forward Error Correction based Adaptive data frame format for Optical camera communication

  • Nguyen, Quoc Huy;Kim, Hyung-O;Lee, Minwoo;Cho, Juphil;Lee, Seonhee
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.94-102
    • /
    • 2015
  • Optical camera communication (OCC) is an extension of Visible Light Communication. Different from traditional visible light communication, optical camera communications is an almost no additional cost technology by taking the advantage of build-in camera in devices. It was became a candidate for communication protocol for IoT. Camera module can be easy attached to IoT device, because it is small and flexible. Furthermore almost smartphone equip one or two camera for both back and font side with high quality and resolution. It can be utilized for receiving the data from LED or positioning. Actually, OCC combines illumination and communication. It can supply communication for special areas or environment where do not allow Radio frequency such as hospital, airplane etc. There are many concept and experiment be proposed. In this paper we proposed utilizing Android smart-phone camera for receiver and introduce new approach in modulation scheme for LED at transmitter. It also show how Manchester coding can be used encode bits while at the same time being successfully decoded by Android smart-phone camera. We introduce new data frame format for easy decoded and can be achieve high bit rate. This format can be easy to adapt to performance limit of Android operator or embedded system.

3D Reconstruction of Structure Fusion-Based on UAS and Terrestrial LiDAR (UAS 및 지상 LiDAR 융합기반 건축물의 3D 재현)

  • Han, Seung-Hee;Kang, Joon-Oh;Oh, Seong-Jong;Lee, Yong-Chang
    • Journal of Urban Science
    • /
    • v.7 no.2
    • /
    • pp.53-60
    • /
    • 2018
  • Digital Twin is a technology that creates a photocopy of real-world objects on a computer and analyzes the past and present operational status by fusing the structure, context, and operation of various physical systems with property information, and predicts the future society's countermeasures. In particular, 3D rendering technology (UAS, LiDAR, GNSS, etc.) is a core technology in digital twin. so, the research and application are actively performed in the industry in recent years. However, UAS (Unmanned Aerial System) and LiDAR (Light Detection And Ranging) have to be solved by compensating blind spot which is not reconstructed according to the object shape. In addition, the terrestrial LiDAR can acquire the point cloud of the object more precisely and quickly at a short distance, but a blind spot is generated at the upper part of the object, thereby imposing restrictions on the forward digital twin modeling. The UAS is capable of modeling a specific range of objects with high accuracy by using high resolution images at low altitudes, and has the advantage of generating a high density point group based on SfM (Structure-from-Motion) image analysis technology. However, It is relatively far from the target LiDAR than the terrestrial LiDAR, and it takes time to analyze the image. In particular, it is necessary to reduce the accuracy of the side part and compensate the blind spot. By re-optimizing it after fusion with UAS and Terrestrial LiDAR, the residual error of each modeling method was compensated and the mutual correction result was obtained. The accuracy of fusion-based 3D model is less than 1cm and it is expected to be useful for digital twin construction.

A study of next generation OpenCable systems for Ultra-High Definition television broadcasting (초 고화질 텔레비전 방송을 위한 차세대 오픈 케이블 방식에 대한 연구)

  • Cho, Chang-Yeon;Heo, Jun;Kim, Joon-Tae
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.228-237
    • /
    • 2009
  • This paper examines the potential of Ultra-High Definition TV (UD-TV) broadcasting transmission systems beyond HD-TV over cable channel. Firstly, we analyze the trend of TOV(Threshold of Visibility) by extending the OpenCable (J.83 Annex B) system 256QAM which is the standard of Korean and American cable television transmission to 1024QAM, and realize that the OpenCable 1024QAM has nearly 30% higher data rate than 256QAM at the expense of impractically higher TOV (Threshold of Visibility). To achieve practical TOV, we control code rates of inner convolutional coder and replace turbo coder in forward error correction (FEC) part, thereby analyzing the best performance of the OpenCable systems having conventional FEC. In that result, it is necessary to modify conventional FEC of the OpenCable system to achieve under 31.5dB TOV. Moreover we study the potential of UD-TV transmission via two or more TV channels, so called channel bonding, through the Shannon capacity in 6MHz channel and the relationship with next generation A/V codec technologies.

Audio Stream Delivery Using AMR(Adaptive Multi-Rate) Coder with Forward Error Correction in the Internet (인터넷 환경에서 FEC 기능이 추가된 AMR음성 부호화기를 이용한 오디오 스트림 전송)

  • 김은중;이인성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.2027-2035
    • /
    • 2001
  • In this paper, we present an audio stream delivery using the AMR (Adaptive Multi-Rate) coder that was adopted by ETSI and 3GPP as a standard vocoder for next generation IMT-2000 service in which includes combined sender (FEC) and receiver reconstruction technique in the Internet. By use of the media-specific FEC scheme, the possibility to recover lost packets can be much increased due to the addition of repair data to a main data stream, by which the contents of lost packets can be recovered. The AMR codec is based on the code-excited linear predictive (CELP) coding model. So we use a frame erasure concealment for CELP-based coders. The proposed scheme is evaluated with ITU-T G.729 (CS-ACELP) coder and AMR - 12.2 kbit/s through the SNR (Signal to Noise Ratio) and the MOS (Mean Opinion Score) test. The proposed scheme provides 1.1 higher in Mean Opinion Score value and 5.61 dB higher than AMR - 12.2 kbit/s in terms of SNR in 10% packet loss, and maintains the communicab1e quality speech at frame erasure rates lop to 20%.

  • PDF