• Title/Summary/Keyword: Forward Curved Blade

Search Result 19, Processing Time 0.024 seconds

Design Program of Low Noise Centrifugal Fans (저소음 원심형 홴의 설계 프로그램)

  • 박준철;손정민;김기황;이승배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.529-535
    • /
    • 2001
  • A centrifugal fan design code was developed and packaged together with iDesignFan/sup TM/ as new models. This code generate centrifugal forward curved and backward curved bladed impeller optimally. It also predicts the aerodynamic performance and the overall sound pressure level of the rotating fan by assuming steady blade loading. The overall sound pressure level is used as an input parameter from the third loop of the designing process to acquire the most silent fan for the given aerodynamic performance parameters. With this kind of inverse design concept used in the code, the period of designing a fan is significantly shortened. A centrifugal fan design code, developed in this study and included in iDesignFan/sup TM/, predicts the aerodynamic performance such as design flow rate and static pressure. The aerodynamic performance in the design and off-design conditions is calculated by using the mean line analysis. For the steady loading calculation, the lift force distribution in a blade is used.

  • PDF

Study on The Slip Factor Model for Multi-Blades Centrifugal Fan (원심다익송풍기의 미끄럼 계수에 대한 연구)

  • GUO, En-min;KIM, Kwang-Yong;SEO, Seoung-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.111-115
    • /
    • 2002
  • The objective of this work is to develop improved slip factor model and correction method to predict flow through impeller in forward-curved centrifugal fan by investigating the validity of various slip factor models. Both steady and unsteady three-dimensional CFD analyses were performed with a commercial code tn validate the slip factor model and the correction method. The results show that the improved slip factor model presented in this paper could provide more accurate predictions for forward-curved centrifugal impeller than the other slip factor models since the presented model takes into account the effect of blade curvature. The comparison with CFD results also shows that the improved slip factor model coupled with the present correction method provides accurate predictions for mass-averaged absolute circumferential velocity at the exit of impeller near and above the flow rate of peaktotal pressure coefficient.

  • PDF

Design Program of Centrifugal Backward-Bladed and Forward-Bladed Fans (원심형 후향익 및 원심다익홴의 설계 프로그램)

  • Park, J.-C.;Son, J.-M;Lee, S.;Jo, S.-M.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.48-53
    • /
    • 2001
  • A centrifugal fan design code was developed and included in $DasignFan^{TM}$. This program generates forward -curved and backward-curved bladed centrifugal fan data. With the inverse design concept used in the code, the period of designing a fm, which has given aerodynamic performance with minimal acoustic noise, is significantly shortened.. A centrifugal fan design code, developed in this study and included in $DasignFan^{TM}$, predicts the aerodynamic performance by using mean-line analysis and various loss models. In the period of design a lift force distribution between pressure side and suction side of blade is calculated. And then it is used to calculate steady loading noise from the impeller.

  • PDF

A Study on the Operational Characteristic with the Scale Effect of the Cross-Flow Fan (치수효과를 고려한 횡류홴의 작동특성연구)

  • Kim, H.-S.;Kim, Youn-J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.583-589
    • /
    • 2004
  • One of noticeable features in the cross flow fan is that a working fluid passes through impeller blade twice without distinction between the inlet and exit angles. Also, it does produce higher circumferential velocity than other types of blade at the same flow rate in accordance with the application of the forward curved shape. However, a design theory for the cross-flow fan has not yet been formed owing to an eccentric vortex, which is the remarkable characteristics, occurred in a cross-flow fan. Furthermore, the eccentric vortex, which is difficult to control of the size and position, is the important cause of performance decrease. In this study, experiments are carried out to estimate the similarity of the cross-flow fan with various scales and rotational velocity changes. Pressure coefficients to flow coefficients with various scales of the cross-flow fan are plotted to research the application of the general similarity law of the turbomachinery in the cross-flow fan with Archimedes spital, which is the important factor haying an effect on it.

  • PDF

A Study on the Operational Characteristic with the Scale Effect of the Cross-Flow Fan (치수효과를 고려한 횡류홴의 작동특성연구)

  • Kim, H.S.;Kim, Youn J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.3 s.30
    • /
    • pp.26-32
    • /
    • 2005
  • One of noticeable features in the cross flow fan is that a working fluid passes through impeller blade twice without distinction between the inlet and exit angles. Also, it does produce higher circumferential velocity than other types of blade at the same flow rate in accordance with the application of the forward curved shape. However, a design theory for the cross-flow fall has not yet been formed owing to an eccentric vortex, which is the remarkable characteristics, occurred in a cross-flow fan. Furthermore, the eccentric vortex, which is difficult to control the size and position, is the important cause of performance decrease. In this study, experiments we carried out to estimate the similarity of the cross-flow fan with various scales and rotational velocity changes. Pressure coefficients to flow coefficients with various scales of the cross-flow fan are plotted to the application of the general similarity law of the turbomachinery in the cross-flow fan with Archimedes spiral, which is the important factor having an effect on it.

Effects of Starting Angles of a Rearguider on the Performance of a Cross-Flow Fan (리어가이더 시작각 변화가 횡류홴 성능에 미치는 영향)

  • Kim, Hyung-Sub;Kim, Dong-Won;Yoon, Tae-Seok;Park, Sung-Kwan;Kim, Yun-Je
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1981-1986
    • /
    • 2004
  • A cross-flow fan relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. Therefore, the performance of a cross-flow fan is influenced 25% by the impeller, 60% by the rearguider and the stabilizer, 15% by the heat exchanger. At the low flow rate, there exists a rapid pressure head reduction, a noise increase and an unsteady flow against a stabilizer and a rearguider. Moreover, it is difficult to analyze the reciprocal relations of the cross-flow fan because each parameter is independent. Numerical analyses are conducted with different starting angles of the rearguider. Two-dimensional, unsteady governing equations are solved, using FVM, PISO algorithm, sliding grid system and ${\kappa}-{\varepsilon}$ standard turbulence model.

  • PDF

Experimental Study on the Performance of a Cross-Flow Fan with Various Diameter Ratios of Impeller and Rearguider Shapes (임펠러 직경비 및 리어가이더 형상변화가 횡류홴 성능에 미치는 실험적 연구)

  • Kim, H.S.;Kim, D.W.;Yoon, T.S.;Park, S.K.;Kim, Youn-J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.391-396
    • /
    • 2003
  • A cross-flow fan relatively produces higher dynamic pressure at low speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. The performance of a cross-flow fan is influenced 25% by the impeller, 60% by the rearguider and the stabilizer, and 15% by the heat exchanger. At the low flow rate, there exist a rapid pressure head reduction, a noise increase and an unsteady flow against a stabilizer and a rearguider. The purpose of this study is to investigate the reciprocal relation among each parameter Experiments are conducted to study the effects of a rearguider and a diameter ratio of impeller on the performance analysis of a cross-flow fan. Comparing with the rearguider of radial type, the Archimedes type shows excellent results for various diameter ratios.

  • PDF

ANALYSES ON FLOW FIELDS AND PERFORMANCE OF A CROSS-FLOW FAN WITH VARIOUS SETTING ANGLES OF A STABILIZER

  • Kim D. W.;Kim H. S.;Park S. K.;Kim Youn J
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.107-112
    • /
    • 2005
  • A cross-flow fan is generally used on the region within the low static pressure difference and the high flow rate. It relatively makes high dynamic pressure at low rotating speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. At off-design points, there are a rapid pressure head reduction, a noise increase and an unsteady flow. Those phenomena are remarkably influenced by the setting angle of a stabilizer. Therefore, it should be considered how the setting angle of a stabilizer affects on the performance and the flow fields of a cross-flow fan. It is also required to investigate the effect of the volumetric flow rate before occurring stall. Two-dimensional, unsteady governing equations are solved using a commercial code, STAR-CD, which uses FVM. PISO algorithm, sliding grid system and standard k - ε turbulence model are also adopted. Pressure and velocity profiles with various setting angles are graphically depicted. Furthermore, the meridional velocity profiles around the impeller are plotted with different flow rates for a given rotating speed.

Performance Characteristics of a Cross-Flow Fan with Various Impeller Outlet Angles and Rearguiders (임펠러 출구각 및 리어가이더 형상 변화에 따른 횡류홴의 성능 특성)

  • Kim, H.S.;Kim, D.W.;Yoon, T.S.;Park, S.K.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.851-856
    • /
    • 2003
  • A cross-flow fan consists of an impeller, a stabilizer and a rearguider. When it applied for an air conditioner, an evaporator should be added. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. Therefore, the performance of a cross-flow fan is influenced 25% by the impeller, 60% by the rearguider and the stabilizer, 15% by the heat exchanger. At the low flow rate, there are a rapid pressure head reduction, a noise increase and an unsteady flow against a stabilizer and a rearguider. Moreover, the reciprocal relation between the impeller and the flow passage is the important factor for performance improvement of the cross-flow tan because each parameter is independent. The performance characteristics in the cross-flow fan are graphically depicted with various impeller outlet angles and rearguiders.

  • PDF