• 제목/요약/키워드: Forming simulation

검색결과 839건 처리시간 0.028초

삼차원 소성가공 공정 시뮬레이션을 위한 지능형 사면체 요소망 자동생성 (AUTOMATED ADAPTIVE TETRAHEDRAL ELEMENT GENERATION FOR THREE-DIMENSIONAL METAL FORMING SIMULATION)

  • 이민철;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.203-208
    • /
    • 2005
  • In this paper, an automated adaptive mesh generation scheme, based on an advancing-front-Delaunay method, is developed for finite element simulation of three dimensional bulk metal forming processes. During the simulation, the finite element mesh system is adaptively remeshed whenever the mesh is unacceptable. Several schemes are developed such as curvature compensation scheme to minimize volume loss, optimal smoothing scheme to improve element quality, etc. The presented approach is evaluated and applied to automatic forging simulation in order to demonstrate the effect of the developed schemes.

  • PDF

3점 언더레일 슬라이드의 롤포밍 공정에 대한 성형해석연구 (A Study on Forming Analysis for the Roll Forming Process of 3 Point Under Rail)

  • 정동원;박상후;정지현
    • 동력기계공학회지
    • /
    • 제16권6호
    • /
    • pp.52-58
    • /
    • 2012
  • Roll forming process is one of the most widely used processes in the world for forming metals such as a furniture drawer guide or an up and down slide guide. It can manufacture goods of the uniform cross section on a large scale throughout the continuous processing. In the domestic design and manufacture, roll forming process for production is taking most of the method of 2-point under rail slide. However, this method is vulnerable to the structural strength and stiffness is not suitable for high load conditions. Therefore, through systematic study of high load, low noise 3-point ball type of under rail slide its own design and manufacturing technology is the need to build. In this paper, to make center member of 3-point ball-type under rail slide for the refrigerator doors, the roll forming modeling and simulation are performed. Tensile test is performed about SCP-1 1/2H for determine the mechanical properties of materials. Modeling and simulation of roll forming is used MSC.MARC software of a dedicated analysis program used by rigid plastic finite element method. Interference between the roll and the final shape are predicted from the results of the simulation.

Casting Simulation on the Integrated Twin-Scroll Turbine Housing with Exhaust Manifold

  • Kang, Ho-Jeong;Yun, Pil-Hwan;Cheon, Joo-Yong;Kim, Hyo-Jung;Kim, Chung-Min;Park, Jin-Young
    • 한국주조공학회지
    • /
    • 제37권6호
    • /
    • pp.173-180
    • /
    • 2017
  • In this paper, the casting design of the integrated twin-scroll turbine housing with exhaust manifold using stainless steel is investigated. Due to the complexity in its geometry and the poor castability of stainless steel, it is more crucial to set up the appropriate casting design to avoid casting defects. Gas porosity and shrinkage formation with the changes of gating systems (one-/two-side), riser conditions and pouring temperatures are examined via casting simulation and virtual castings. Simulation results show that two-side gating system produced better quality casting than that of one-side gating system, minimizing the gas content of the castings and it is also verified by X-ray analysis for the virtual castings. For the changes of riser conditions and pouring temperatures in the two-side gating system, it is found that the change of the height of two risers plays an important role in obtaining the best quality by reducing shrinkage defects.

샌드위치 판재의 성형성을 고려한 차체 부품의 개발 (Development of Automotive Structural Part Considering the Formability of Sandwich Panel)

  • 최원호;최보성;이덕영;황우석
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.33-38
    • /
    • 2012
  • Sandwich composite panel with high strength steel face can reduce the weight of the automotive structural parts. Unlike the parts in aerospace application, the automotive parts are made by the forming process for mass production. The CAE simulation can predict the failures caused by forces and deformation during the forming process. Since the material properties are very important factor for the simulation, we performed the tensile test to get the material properties. The inspections by the optical microscope at each strain level show the states of the polymer resin. The material properties measured by the tensile tests are used for the input data of simulation. The simulation predicts the forming process of the bumper back beam very exactly compared with the try out results.

판재성형 해석시 금형내의 공기거동 모델링 (Modeling the Behavior of Trapped Air in Die Cavity During Sheet Metal Forming)

  • 최광용;김헌영
    • 소성∙가공
    • /
    • 제20권5호
    • /
    • pp.377-386
    • /
    • 2011
  • During stamping processes, the air trapped between sheet metal and the die cavity can be highly compressed and ultimately reduce the shape accuracy of formed panels. To prevent this problem, vent holes and passages are sometimes drilled into the based on expert experience and know-how. CAE can be also used for analyzing the air behavior in die cavity during stamping process, incorporating both elasto-plastic behavior of sheet metal and the fluid dynamic behavior of air. This study presents sheet metal forming simulation combined simultaneously with simulation of air behavior in the die cavity. There are three approaches in modeling of air behavior. One is a simple assumption of the bulk modulus having a constant pressure depending on volume change. The next is the use of the ideal gas law having uniform pressure and temperature in air domain. The third is FPM (Finite point method) having non-uniform pressure in air domain. This approach enables direct coupling of mechanical behavior of solid sheet metal and the fluid behavior of air in sheet metal forming simulation, and its result provides the first-hand idea for the location, size and number of the vent holes. In this study, commercial software, PAM-$STAMP^{TM}$ and PAM-$SAFE^{TM}$, were used.

유동성형의 성형력에 미치는 가공깊이와 이송속도의 영향 (The Effects of Forming Depth and Feed Rate on Forming Force of Flow Forming)

  • 남경오;염성호;강신준;홍성인
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.251-254
    • /
    • 2005
  • The flow forming has been used to produce long thin walled tube parts, with reduced forming load and enhanced mechanical and surface quality for a good finished part compared with other method formed parts. So flow forming technique is used widely in industrial production. Especially spinning and flow farming techniques an used frequently in automotive, aerial, defense industry. In this paper, FEM analysis of three-roller backward flow forming of a workpiece is carried out to study effects of forming depth and feed rate on forming force. The axial and radial forces on several forming depth and feed rate conditions are obtained. The phenomena such as bell mouth, build up and bulging during simulation are observed as well.

  • PDF

구조용 파이프 생산을 위한 새로운 점진적 롤 성형 공정 개발에 관한 기초 연구 (Fundamental Study on the Development of a New Incremental Roll Forming Process for Structural Pipe Manufacturing)

  • 손종윤;윤희석;박원균;심도식
    • 한국정밀공학회지
    • /
    • 제34권3호
    • /
    • pp.217-224
    • /
    • 2017
  • Structural pipe frames are usually manufactured by complex processes, in which a straight pipe with an arbitrary cross-section is prepared via a roll-forming process and then fabricated into three-dimensional shapes by a secondary process. These conventional processes have low productivity. Recently, the inefficiency of the conventional processes has created the need to develop new forming technologies. In this study, a new incremental roll-forming process is proposed. The study is aimed at verifying the feasibility of the proposed process and investigating the fundamental process parameters using finite-element simulations. The result of the simulation demonstrates that the proposed process can be used effectively for cold fabrication of various shapes of structural pipes. In addition, the result of the investigation of parameters shows that the forming amount, number of roll sets, and distance between roll sets are significant factors to be considered in resolving dimensional errors of the product and improving its quality.

박판 딤플 성형을 위한 유한요소해석 및 성형성 평가 (Finite Element Analysis and Formability Evaluation for Dimple Forming with Thin Sheet Metal)

  • 허성찬;서영호;구태완;송우진;김정;강범수
    • 소성∙가공
    • /
    • 제16권8호
    • /
    • pp.621-628
    • /
    • 2007
  • Nowadays, Exhaust Gas Recirculation(EGR) Cooler is one of the most favorite systems for reducing the generation amount of $NO_x$ and other particle materials from vehicles burning diesel as fuel. Efficiency of the system is mainly dependent on its heat transfer efficiency and this ability is affected by net heat transferring area of the system. For that reason, several types of heat transfer tube such as dimple, wrinkle and spiral types that have large net area are used. However, it is difficult to manufacture the rectangular tube with dimpled type structure because it experiences too much strain around the rectangular tube surface during the forming process. For that reason, in this study, numerical simulation for forming process of non-symmetric dimple shape on a thin sheet metal was carried out. Furthermore, theoretical forming limit curves(forming limit diagram, forming limit stress diagram) were proposed as criteria of formability evaluation. From the results of finite element simulation in view of stress and strain distribution, it is found that the designed process has robustness and feasibility to safely manufacture the dimpled rectangular tube.

Comparative Study on Surrogate Modeling Methods for Rapid Electromagnetic Forming Analysis

  • Lee, Seungmin;Kang, Beom-Soo;Lee, Kyunghoon
    • 소성∙가공
    • /
    • 제27권1호
    • /
    • pp.28-36
    • /
    • 2018
  • Electromagnetic forming is a type of high-speed forming process to deform a workpiece through a Lorentz force. As the high strain rate in an electromagnetic-forming simulation causes infeasibility in determining constitutive parameters, we employed inverse parameter estimation in the previous study. However, the inverse parameter estimation process required us to spend considerable time, which leads to an increase in computational cost. To overcome the computational obstacle, in this research, we applied two types of surrogate modeling methods and compared them to each other to evaluate which model is best for the electromagnetic-forming simulation. We exploited an artificial neural network and we reduced-order modeling methods. During the construction of a reduced-order model, we extracted orthogonal bases with proper orthogonal decomposition and predicted basis coefficients by utilizing an artificial neural network. After the construction of the surrogate models, we verified the artificial neural network and reduced-order models through training and testing samples. As a result, we determined the artificial neural network model is slightly more accurate than the reduced-order model. However, the construction of the artificial neural network model requires a considerably larger amount of time than that of the reduced-order model. Thus, a reduced order modeling method is more efficient than an artificial neural network for estimating the electromagnetic forming and for the rapid approximation of structural simulations which needs repetitive runs.

Numerical and Experimental Investigation on the Tube Forming in the Radial-Forward Extrusion

  • Ko Beong-Du;Jang Dong-Hwan;Choi Ho-Joon;Hwang Beong-Bok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권2호
    • /
    • pp.26-33
    • /
    • 2005
  • In this paper, the tube forming by radial-forward extrusion is analyzed by numerical simulation and experiments. The paper discusses the effect of process variables such as gap height, relative gap width and die comer radius on tube forming. The influence of deformation patterns of flange in radial extrusion on forward extrusion for tube forming is investigated and summarized in terms of the maximum forming force and hardness variations along the extrusion path. Furthermore the external defects are shown experimentally during the forming operation. Based on finite element analysis in conjunction with experimental test in Al alloy, analysis is performed for important parameter combination in order to reduce forming defects. Eventually, the process parameters for safe forming are suggested in order to reduce the forming defects.