• Title/Summary/Keyword: Forming simulation

Search Result 839, Processing Time 0.026 seconds

Forming Analysis of the Front Side Member with Equivalent Draw-bead and Application to Crash Analysis (등가 드로오비드를 적용한 Front Side Member의 성형 해석 밑 충돌 해석에의 적용)

  • Song, J.H.;Kim, K.P.;Kim, S.H.;Huh, H.;Kim, H.S.;Hong, S.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.266-269
    • /
    • 2003
  • This paper is concerned with a forming analysis of front side members and the application of the forming effect in crash analysis of auto-body. Drawbead restraining forces are calculated with ABAQUS/Strandard in order to identify the boundary condition in forming process. Forming analysis with equivalent drawbead is carried out with LS-DYNA3D. In order to demonstrate the validity of the forming analysis, quantitative comparison of the thickness variation between the real product and the numerical simulation result is carried out. Forming histories obtained from the forming analysis are utilized as the initial condition of the crash analysis for accurate assessment of the crashworthiness.

  • PDF

A Study on the Improvement of Forming Process of Power Assisted Steering Part (PAS부품의 공정개선에 관한 연구)

  • 윤대영;황병복;유태곤
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.265-273
    • /
    • 2000
  • The conventional and new forging processes of the power steering worm blank are analyzed by the rigid-plastic finite element method. The conventional process contains three stages such as indentation, extrusion and upsetting, which was designed by a forming equipment expert. Process conditions such as reduction in area, semi-die angle and upsetting ratio are considered to prevent internal or geometrical defects. The results of simulation of the conventional forging process are summarized in terms of deformation patterns, load-stroke relationships and die pressures for each forming operation. Based on the simulation results of the current three-stage, the power steering worm blank forging process for improving the conventional process sequence is designed. Die pressures and forming loads of proposed process are within limit value which is proposed by experts and the proposed process is found to be proper for manufacturing the power steering worm blank.

  • PDF

Application of CAE Techinique for the Optimization of Press Forming Condition of Low Arm (로우암 프레스 성형 조건의 최적화를 위한 CAE 기술의 적용)

  • 김영석;이택근;김성태
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.257-264
    • /
    • 2000
  • In this study, optimization for press forming condition of low arm was performed with explicit dynamic FEM code, Pam-Stamp. FEM simulation was coupled with the Taguchi's experiment technique having three design variables - friction coefficient, plastic anisotropy parameter, and blank shape - which are chosen to be optimized. The simulation results were compared with those of experiment. We found out the change of blank shape among these three design variables is very effective in optimizing press forming condition of low arm. In addition, the modified blank shape shows high yield of slitting coil.

  • PDF

Forming Analysis on the Tubular Hydroforming of Side Member (Side Member 관재 하이드로포밍 성형해석)

  • Park J. H.;Choi Y. C.;Oh Y. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.54-58
    • /
    • 2001
  • In recent years, hydroforming technology has been one of the most important technology in automotive industry in the points of weight saving, cost reduction and qualify improvement. However, compared with traditional metal forming technology, hydroforming has much fewer information in experience and empirical knowledge. But we don't have my sufficient time and money to produce hydroforming products using real blank directly Therefore Simulation is essential in hydrofonrung technology development. In this paper, we simulate the side member as the tubular hydroforming technology. The manufacturing process of side member' consists of pre_bending, pre_forming, and hydroforming of a thin tube. Variables such as internal pressure, end feeding, and tool geometry are optimized to improve the forming safety. And we simulate side member according to several lubricant conditions. from those simulations, we find that strain distributions can be reduced well by internal pressure and end feeding control, and lubrication is the most important thing in hydroforming process.

  • PDF

An Analysis on the Forming Process of a Power Assisted Steering Part (PAS 부품의 성형공정해석)

  • 박성호;이호용;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.7-15
    • /
    • 1996
  • A Manufacturing process of the power steering worm blank is analyzed by FEM aimulation. The process includes mainly three operations such as indentation, extrusion, and upsetting, which was designed bya forming equipment expert. The results of simulation are summarized in terms of load-stroke relationships, die pressure distributions, effective strain distribution, and deforming patterns for each forming operation. Also, Efforts are focused to get the reason that the tool expert designed the forming process in three operations. The results of the simulation are to be useful for the next advanced process planning in terms of good dimesional accuracy, savings in material and machining, no deforaming defects and imporvements in mechanical properties.

  • PDF

Evaluation of Cooling Capability of Hot Press Forming Die with Thermal CFD Simulation (열유동 해석을 통한 핫프레스 포밍 금형의 냉각 성능 평가)

  • Lee, K.;Lee, J.J.;Suh, C.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.4
    • /
    • pp.242-247
    • /
    • 2016
  • CFD simulation with FlowVision® is used to evaluate the capability of cooling channel in hot press forming dies. Two different types of cooling channels, dry drilled and pocket types are considered for comparison. Two different approaches for simulating cooling channel are considered. One is single-phase velocity calculation for coolant only and the other is multiphase thermal and velocity calculation for die, blank and coolant all together. Both approaches show better cooling performance in pocket type cooling channel. Also both approaches show their own effectiveness in designing cooling channel of hot press forming dies.

Dynamics Simulation of Solid Particles in Compression Deformation of Rheology Material (레오로지 소재의 압축변형시 고상입자 거동의 동역학 해석)

  • Lee, C.S.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.395-401
    • /
    • 2006
  • It is reported that semi-solid forming process takes many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy saves. It is important to predict the deformation behavior for optimization of the forging process with semi-solid materials and to control liquid segregation for mechanical properties of materials. But rheology material has thixotropic, pseudo-plastic and shear-thinning characteristics. So, it is difficult for a numerical simulation of the rheology process to be performed because complicated processes such as the filling to include the state of the free surface and solidification in the phase transformation must be considered. General plastic or fluid dynamic analysis is not suitable for the analysis of the rheology material behavior. Recently, molecular dynamics is used for the behavior analysis of the rheology material and turned out to be suitable among several methods. In this study, molecular dynamics simulation was performed for the control of liquid segregation, forming velocity, and viscosity in compression experiment as a part of study on the analysis of rheology forming process.

Investigation of Cracking Condition during Press Forming of Extruded Aluminum Sheets (알루미늄 압출판재의 프레스성형 중 파열조건에 대한 조사)

  • Chu, Seok Jae;Park, Chang Gu;Cho, Eun Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.251-258
    • /
    • 2014
  • Sunroof tracks are manufactured by press-forming extruded aluminum sheets. During press forming, cracking occurs along the sharply bent edge. The final positions of the punch and die were measured on the section, and their relation to cracking was investigated. Finite element simulation of bending to the final position was done to find the critical strains. Three-point bending tests with different material orientations, hardnesses, bending edge lengths, and bending radii were carried out in the laboratory, and finite element simulation of the three-point bending tests was performed to find the critical strains.

Forming Characteristics of the Forward and Backward Tube Extrusion Using Pipe (중공축 소재를 이용한 전후방 복합압출의 성형 특성)

  • Kim S. H.;Lee H. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.772-778
    • /
    • 2005
  • This paper is concerned with the analysis of material flow characteristics of combined tube extrusion using pipe. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The combined tube extrusion is analyzed by using a commercial finite element code. This simulation makes use of pipe material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. Deformation patterns and its characteristics in combined forward and backward tube extrusion process were analyzed for forming loads with primary parameters, which are various punch nose radius relative to backward tube thickness. The results from the simulation show the flow modes of pipe workpiece and the die pressure at the contact surface between pipe workpiece and punch. The specific backward tube thickness and punch nose radius have an effect on extruded length in combined extrusion. The combined one step forward and backward extrusion is compared with the two step extrusion fer forming load and die pressure.