• Title/Summary/Keyword: Forming effects

Search Result 1,335, Processing Time 0.031 seconds

Development of Automobile Cowl Grille Using Two Shot Injection Molding by Computer aided engineering (CAE를 활용한 이중사출 방식의 자동차용 Cowl Grille 개발)

  • Noh, Byeong-Soo;Jun, Nam-Chil;Ryu, Hyung-Kwon;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.18-22
    • /
    • 2014
  • Two shot molding is one of the injection method which uses two materials or two color materials simultaneously in one mold. Two shot molding is good rate of productivity and economical because of no extra-progress necessary. The cowl grille is located in the bottom of wind shield glass and rolls as a passage of air inlet to inside of vehicle. It consists of body and seal. Firstly, the body is injected with PP. Next seal is extruded with EPDM and engineered and then assembled with body. These procedures lead high cost of production and the quality of part has problems. Therefore, it has effects on saving production cost and being a solution of the quality problems with the development of two shot molding cowl grille. It is guaranteed that two shot molding will be widely used in the vehicle parts industry afterwards.

  • PDF

Spray forming the wear resistant hypereutectic Al-25Si-X alloy and property evaluation (과공정 Al-25Si-X 내마모 합금의 분무 성형 및 특성 평가)

  • Lee Jae Chul;Seok Hyun Kwang;Shin Don Soo;Lee Ho In
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.05a
    • /
    • pp.24-37
    • /
    • 1999
  • A comprehensive methodology to consolidate the hypereutectic Al-27Si-X alloy via spray forming was investigated in an attempt to judge the feasiblilty of this alloy in applying wear resistant components. Billets having desired shape and microstructures were fabricated using forming parameters obtained from numerical calculations. Prior to tube extrusion of the spray formed billets, effects of various extrusion conditions, such as extrusion ratio, die temperature, and die configuration, on microstructures of the billet were studied. Based on results obtained from the preliminary extrusion tests, the formed billets were then hot extruded into a tubular shape. Various material properties of the extruded billet were measured and compared with the other candidate materials for anti-wear applications.

  • PDF

A Study on Variation of Colony Forming Units of Fungi by Input Ratios of Wood Chips in Aerobic Composting of Food Wastes (음식물류폐기물의 호기성 퇴비화에 있어서 목재세편의 투입비에 따른 곰팡이의 균락형성단위의 변화에 관한 연구)

  • Park, Seok-Hwan
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.5
    • /
    • pp.451-455
    • /
    • 2007
  • This study was performed to evaluate the effects of input ratios of bulking material in aerobic composting of food wastes on variation of colony forming units(CFU) of fungi. Wood chips were used as a bulking material. Volume ratios of food wastes to wood chips in reactor of Control, WC-1 and WC-2 were 10/0, 10/5 and 10/10, respectively. Reactors were operated for 24 days with I hour stirring by 1rpm and 2 hours of the forced aeration rate of $80L/min{\cdot}m^3$ per day. WC-2 reached high temperature range faster than WC-1, and the maximum temperature of WC-2 was higher than that of WC-1. WC-2 reached high pH range faster than WC-1. and the maximum pH of WC-2 was higher than that of WC-1. WC-2 reached high Log(CFU/gram) range faster than WC-I, and the maximum Log(CFU/gram) of WC-2 was higher than that of WC-1. These all mean that the reaction velocity of composting of WC-2 was faster than that of WC-1. The profile of fungi changes in Log(CFU/gram) was similar to that of temperature changes (r=0.8861) not pH changes (r=0.1631).

PANORAMIC VIEWS OF GALAXY CLUSTER EVOLUTION: GALAXY ECOLOGY

  • Kodama, Tadayuki;Koyama, Yusei;Hayashi, Masao;Ken-ichi, Tadaki
    • Publications of The Korean Astronomical Society
    • /
    • v.25 no.3
    • /
    • pp.101-105
    • /
    • 2010
  • Taking the great advantage of Subaru's wide field coverage both in the optical and in the near infrared, we have been providing panoramic views of distant clusters and their surrounding environments over the wide redshift range of 0:4 < z < 3. From our unique data sets, a consistent picture has been emerging that the star forming activity is once enhanced and then truncated in galaxy groups in the outskirts of clusters during the course of cluster assembly at z < 1. Such activity is shifted into cluster cores as we go further back in time to z ~ 1.5. At z = 2 - 2.5, we begin to enter the epoch when massive galaxies are actually forming in the cluster core. And by z ~ 3, we eventually go beyond the major epoch of massive galaxy formation. It is likely that the environmental dependence of star forming activity is at least partly due to the external environmental effects such as galaxy-galaxy interaction in medium density regions at z < 1, while the intrinsic effect of galaxy formation bias overtakes the external effect at higher redshifts, resulting in a large star formation activity in the cluster center.

Analysis and Optimization of Design Parameters in a Cold Cross Rolling Process using a Response Surface Method (반응표면법을 이용한 냉간전조압연공정 설계변수의 영향도 분석 밑 설계최적화)

  • Lee, H.W.;Lee, G.A;Choi, S.;Yoon, D.J.;Lim, S.J.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.550-555
    • /
    • 2006
  • In this study, effects of forming angle and friction coefficient on a initiation of the Mannesmann hole defect were analyzed by using a response surface method. The maximum effective plastic strain at center point of specimen is utilized for the prediction of the starting point of crack occurrence, which is suggested by the comparison of integrals of four different ductile fracture models between the histories of the effective plastic strain at center point. It was revealed that the principal stress at the center is the dominant element to the increase of the effective plastic strain. It was also verified by the simulation results from the comparison of experiment and simulation. It is provided that the forming angle of 25 degrees and the spreading angle of 1 degree can be a proper design condition without an occurrence of internal hole defect and an excessive slip.

Broadband Photometric Study of Two Open Clusters: Westerlund 1 and IC 1848

  • Lim, Beomdu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.83.1-83.1
    • /
    • 2014
  • Open clusters consisting of a co-spatial and coeval population with a similar chemical composition are a superb astrophysical test bed in both stellar and galactic astronomy. We introduce not only several scientific issues relating to these objects but also comprehensive studies of the two young open clusters Westerlund 1 and IC 1848 formed in extremely different star-forming conditions. Westerlund 1 is known as the most massive starburst cluster in the Galaxy. Located in the Scutum-Centaurus spiral arm, the cluster is relatively close to the Galactic Center. The apparent surface density is very high. On the other hand, IC 1848 is a core cluster within the large-scale star-forming region W5 lying in the Perseus arm. Unlike Westerlund 1, IC 1848 with a putatively low metallicity exhibits a low surface density. We present the fundamental parameters of those young clusters, such as reddening, distance, and age, obtained from the broadband photometric analysis. The stellar initial mass function (IMF) of the clusters is used to investigate the effects of the different star-forming conditions on the star formation activity. With the results of previous studies for several young open clusters, our preliminary results support a possibility that star formation activity may be affected by the environmental factors or the initial condition of natal clouds. In addition, we shortly discuss the age scale and spread of pre-main sequence stars to understand the formation processes of star clusters.

  • PDF

Finite Element Analysis of Sheet Metal Forming Process Using Shell Element (쉘 요소를 이용한 박판성형공정의 유한요소해석)

  • Ko Hyung-Hoon;Lee Chan-Ho;Kang Dong-Kyu;Sul Nam-Ki;Lee Kwang-Sik;Jung Dong-Won
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.122-125
    • /
    • 2005
  • The AutoForm previously used the membrane element and it accomplished sheet metal forming analysis. The membrane analysis has been widely applied to various sheet metal forming processes because of its saving time effectiveness. However, it's well known that the membrane analysis can not provides correct information for the processes which considerable bending effects. From this time research it tried to compare the formation analysis result which uses the shell element which is applied newly in the AutoForm and actual products. The shell element is compromise method between continuum analysis and membrane analysis. The Finite element method by using shell element is the most economical numerical method. From analysis results, FEA by using shell element can estimate accurately the problems happened in actual auto-body panel.

  • PDF

Effects of needle punching process and structural parameters on mechanical behavior of flax nonwovens preforms

  • Omrani, Fatma;Soulat, Damien;Ferreira, Manuela;Wang, Peng
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.157-168
    • /
    • 2019
  • The production of nonwoven fabrics from natural fibers is already expanding at an industrial level for simple curvature semi-structural part in the automotive industry. To develop their use for technical applications, this paper provides an experimental study of the mechanical behavior of flax-fiber nonwoven preforms. A comparison between different sets of carded needle-punched nonwoven has been used to study the influence of manufacturing parameters such as fibers' directions, the area and the needle punching densities. We have found that the anisotropy observed between both directions can be reduced depending on these parameters. Furthermore, this work investigates the possibility to form double curvature parts such as a hemisphere as well as a more complex shape such as a square box which possesses four triple curvature points. We propose a forming process adapted to the features of the nonwoven structure. The purpose is to determine their behavior under high stress during various forming settings. The preforming tests allowed us to observe in real time the manufacturing defects as well as the high deformability potential of flax nonwoven.