• Title/Summary/Keyword: Forming Velocity

Search Result 308, Processing Time 0.023 seconds

A STUDY OF LYNDS 1299 DARK CLOUD

  • RYU OK-KYUNGI;LEE YOUNGUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.31 no.2
    • /
    • pp.161-171
    • /
    • 1998
  • We have mapped about 1.5 square degree regions of Lynds 1299, a well isolated dark cloud in the Outer Galaxy (l = $122^{\circ}$, b = $-7^{\circ}$), in the J = 1- 0 transition of $^{12}CO$ and $^{13}CO$ with the 13.7 m radio telescope at Taeduk Radio Astronomy Observatory (TRAO). We found that there are two velocity components in the molecular emission, at $V_{LSR} = -52 km S^{-1}$ (Cloud A) and -8.8 km $s^{-1}$ (Cloud B), respectively. We have derived physical parameters of two molecular clouds and discussed three different mass estimate techniques. We found that there are large discrepancies between the virial and LTE mass estimates for both clouds. The large virial mass estimate reflects the fact that both are not gravitationally bound. We adopt the mass of $5.6 {\times}10^3 \;M{\bigodot}$ for Cloud A and $1.2{\times}10^3 \;M{\bigodot}$) for Cloud B using conversion factor. Cloud A is found to be associated with a localized star forming site, and its morphology is well matching with that of far-infrared (FIR) dust emission. It shows a clear ring structure with an obvious velocity gradient. We suggest that it may be a remnant cloud from a past episode of massive star formation. Cloud B is found to be unrelated to Cloud A (d = 800 pc) and has no specific velocity structure. The average dust color temperature of the uncontaminated portion of Cloud A is estimated to be 24$\~$27.4 K. The low dust temperature may imply that there is no additional internal heating source within the cloud. The heating of the cloud is probably dominated by the interstellar radiation field except the region directly associated with the new-born B5 star. Overall, the dust properties of Cloud A are similar to those of normal dark cloud even though it does have star forming activity.

  • PDF

A Study on the Backward Extrusion of Internal Spline (내부 스플라인의 후방압출에 관한 연구)

  • Cho, YongIl;Choi, JongUng;Qiu, Yuangen;Cho, Heayong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.15-23
    • /
    • 2020
  • Spline is a machine component using transmits rotating energy with grooves on internal of boss and external periphery of shaft. Internal spline is generally produced by machining process. However, to reduce manufacturing cost and save time, plastic deformation process such as backward extrusion is gradually adapted for spline production. In plastic deformation process, forming load, stress on tools and flow flaws should be taken into account to have sound products. For this purpose, kinematically admissible velocity fields for Upper Bound Method in backward extrusion of internal spline has been suggested, then forming load and relative pressure have been calculated. Internal spline forming experiments have been con-ucted under hydraulic press and the calculated forming load well predicts the load of experiment.

Dynamics Simulation of Solid Particles in Compression Deformation of Rheology Material (레오로지 소재의 압축변형시 고상입자 거동의 동역학 해석)

  • Lee, C.S.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.395-401
    • /
    • 2006
  • It is reported that semi-solid forming process takes many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy saves. It is important to predict the deformation behavior for optimization of the forging process with semi-solid materials and to control liquid segregation for mechanical properties of materials. But rheology material has thixotropic, pseudo-plastic and shear-thinning characteristics. So, it is difficult for a numerical simulation of the rheology process to be performed because complicated processes such as the filling to include the state of the free surface and solidification in the phase transformation must be considered. General plastic or fluid dynamic analysis is not suitable for the analysis of the rheology material behavior. Recently, molecular dynamics is used for the behavior analysis of the rheology material and turned out to be suitable among several methods. In this study, molecular dynamics simulation was performed for the control of liquid segregation, forming velocity, and viscosity in compression experiment as a part of study on the analysis of rheology forming process.

Forming Limit of AZ31B Magnesium Alloy Sheet in the Deep Drawing with Cross Shaped Die (십자 형상 금형의 디프 드로잉에서 AZ31B 마그네슘 합금판재의 성형 한계)

  • Hwang, S.H.;Choi, S.C.;Kim, H.Y.;Kim, H.J.;Hong, S.M.;Shin, Y.S.;Lee, G.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.374-377
    • /
    • 2008
  • Magnesium alloy sheets are usually formed at temperatures between $150^{\circ}C$and $300^{\circ}C$ because of their poor formability at room temperature. In the present study, the formability of AZ31B magnesium alloy sheets was investigated by the analytical and experimental approaches. First, tensile tests and the limit dome height test were carried out at elevated temperatures to get the mechanical properties and forming limit diagram, respectively. And then deep drawing of cross shaped die was tried to get the minimum corner radius and forming limit at specific temperature. Blank shape, punch velocity, minimum corner radius, fillet size, etc, were determined by finite element analysis physical try-outs. Especially, optimum punch and die temperature were suggested through the temperature-deformation analysis using Pam-stamp.

  • PDF

Solidification Analysis for Surface Defect Prediction of Rheology Forming Process Considering Flow Phenomena of Liquid and Solid Region (액상과 고상의 유동현상을 고려한 레오로지 성형공정의 표면결함예측을 위한 응고해석)

  • Seo, Pan-Ki;Jung, Young-Jin;Kang, Chung-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.1971-1981
    • /
    • 2002
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum alloy has been studied. Two-phase flow model to investigate the velocity field and temperature distribution is proposed. The proposed mathematical model is applied to the die shape of the two types. To calculate the velocities and temperature fields during rheology forming process, the each governing equations correspondent to the liquid and solid region are adapted. Therefore, each numerical model considering the solid and liquid coexisting region within the semi-solid material have been developed to predict the defects of rheology forming parts. The Arbitrary Boundary Maker And Cell(ABMAC) method is employed to solve the two-Phase flow model of the Navier-Stokes equation. Theoretical model basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on using the liquid and solid viscosity. The Liquid viscosity is pure liquid state value, however solid viscosity is considered as a function of the shear rate, solid fraction and power law curves.

Evaluation of Wear in Inconel 600 Tools in Superplastic Forming of Ti6Al4V Sheet (Ti6Al4V 판재의 초소성 성형공정에서 Inconel 600 금형 마모 평가)

  • J. Bang;J. Song;M. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.112-117
    • /
    • 2024
  • In this study, the friction and wear characteristics of Inconel 600 in the superplastic forming process of Ti6Al4V were evaluated through pin-on-disc tests. To achieve an efficient and systematic experimental design, the Taguchi method was employed. The wear track of the Inconel 600 pin showed scratches in the sliding contact direction, confirming that the wear mechanism is abrasive wear. Through sensitivity analysis such as ANOVA and Main effects, it was confirmed that both normal force and sliding distance have a significant impact on the wear. Changes in sliding velocity and distance did not affect the friction coefficient, which remained relatively constant at approximately 0.380. The wear prediction model for Inconel 600 in the superplastic forming of Ti6Al4V was constructed, which can be utilized as a guideline for the prediction and management of tool wear.

Variation of microstructures and mechanical properties of hot heading process of super heat resisting alloy Inconel 718 (초내열 합금 Inconel 718 열간 헤딩 공정에서의 조직 및 기계적 특성 변화)

  • Choi, Hong-Seok;Ko, Dae-Chul;Kim, Byung-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1373-1378
    • /
    • 2007
  • Metal forming ins the process changing shapes and mechanical properties of the workpiece without initial material reduction through plastic deformation. Above all, because of hot working carried out above recrystallization temperature can be generated large deformation with one blow, it can produce with forging complicated parts or heat resisting super alloy such as Inconel 718 has the worst forgeability. In this paper, we established optimal variation of hot heading precess of the Inconel 718 used in heat resisting component and evaluated mechanical properties hot worked produce. Die material is SKD61 and initial temperature is $300^{\circ}C$. Initial billet temperature and punch velocity changed, relatively. Friction coefficient is 0.3 as lubricated condition of hot working. CAE is carried out suing DEFORM software before making the tryout part, and it is manufactured 150 ton screw press with optimal condition. It is known that forming load was decreased according to decreasing punch velocity.

  • PDF

Finite Element Analysis of a Multi-Stage Axisymmetric Forging Process Having A Spring-Attached Die (스프링부착 금형을 가진 다단 축대칭 단조공정의 유한요소해석-단조시뮬레이터 공정적용 사례(3))

  • 전만수;이석원;정재헌
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.93-100
    • /
    • 1996
  • In this paper, a computer simulationtechnique for the forging process having a spring-attached die was presented . The penalty rigid-thermoviscoplastic finite element method was empolyed together with an interatively force-balancing method, in which the convergence was achieved when the forming load and the spring reaction force are in equilibrium within the user-specified allowable accuracy. The force balance was controled by adjusting the velocity of the spring-attched die. th minimize the number of internations, a velocity estimating schemewas proposed. Two application examples found in the related company were given. In the first application example, the predicted metal folw lines were compared with the acturally forged ones. in the second example, a hot forging process with a spring-attached die was simulated and the analyzed results were discussed in order to investigated the effects of spring-attached dies on the metal flow lines and the forming loads.

  • PDF

A Study on the U-bending of Rectangular Hollow Tube by the Eccentric Extrusion and Bending Process (편심압출굽힘가공법에 의한 사각형 단면을 가진 중공 튜브제품의 U형굽힘가공에 관한 연구)

  • Kim, Jin-Hoon;Jin, In-Tai
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.496-504
    • /
    • 1998
  • The eccentric extrusion and bending process for the forming of the curved rectangular hollow tube is newly developed. Generally the bending process of hollow tube is the secondary process followed by the extrusion process of the hollow tube from the round billet. So many defects such as wrinkling and the difference of wall thickness can be happened during the secondary bending process. In order to avoid the defects the new process named as "the eccentric extrusion and bending process" is suggested and applied to the U-bending of rectangular hollow tube. In this paper the kinematically admissible velocity field between the dies surface and the internal plug boundary surface s developed for the curving velocity. By the using of this curving velocity field the curvature of extruded products can be calculated with the parameters such as eccentricity dies length friction constant aspect ratio.

  • PDF