• Title/Summary/Keyword: Forming Speed

Search Result 379, Processing Time 0.027 seconds

A Development of Composting System

  • Nishizaki, Kunio;Yokochi, Yasuhiro;Shibata, Yoichi;Otani, Ryuji;Nagai, Tadanobu
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.722-727
    • /
    • 1996
  • A simple compost windrow-forming car and a compost tuner were developed at the aim of low cost manure management systems. The developed compost windrow- forming car is possible windrows formation at a short time. In order to be pulverized and mixed by upper and lower beaters at the windrow-forming, the condition of air and the mixing of materials to play a major role in composting is filled. This car can also utilized for a manure spreader by folding the windrow-forming cover. The developed compost turner is a type equipped with tractor rear-right side. Main specifications are 2.5m working width, overall length 3.3m and 45degrees conveyer inclination angle, 2 beaters for mixing and pulverization are equipped in front parts. Windrows of 2.5m width and 1.5m height are turned at the speed of 4.5-5.1m/min. In accordance with the above, by combining the compost windrow-forming car and the compost turner, a simple composting system for each farmer could be constructed by the low c st.

  • PDF

Forming Simulation and Experiment for Progressive Fabrication Process of Inner Fin in Heat Exchanger

  • Ji, Dong-Hyeok;Jung, Dae-Han;Jin, Chul-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.4
    • /
    • pp.405-413
    • /
    • 2019
  • In this study, a progressive process was performed to fabricate the inner fin of a high-efficiency heat exchanger. A forming simulation was also carried out on the concavo-convex of the inner fin, forming a simulation based on elastic-plastic finite element method. The forming analysis where the speed of the press descended and ascended was set to five seconds showed that the effective stress was at a maximum of about 69 MPa in the curved portion where the bending occurred. Therefore, the die was designed based on the simulation results, and the inner fin die was installed on the 400-ton capacity press. After that, the inner fin fabrication experiment was conducted under the same condition as the simulation. Crack was not found from the curved portion of the concavo-convex of the inner fin. The profile of the concavo-convex of the prepared inner fin measured 6.7~6.8 mm in depth, 2.65~2.7 mm in width, and 0.3 mm in thickness.

Modeling of Billet Shape in Spray Forming Process (분무성형공정에서의 빌렛형상 모델링)

  • Jang, Dong-Hun;Gang, Sin-Il;Lee, Eon-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.961-970
    • /
    • 1997
  • A numerical method is presented to predict and analyze the shape of a growing billet produced from the "spray forming process" which is a fairly new near-net shape manufacturing process. It is important to understand the mechanism of billet growing because one can obtain a billet with the desired final shape without secondary operations by accurate control of the billet shape, and it can also serve as a base for heat transfer and deformation analysis. The shape of a growing billet is determined by the flow rate of the alloy melt, the mode of nozzle scanning which is due to cam profile, the initial positio of the spray nozzle, scanning angle, and the withdrawal speed of the substrate. In the present study, a theoretical model is first established to predict the shape of the billet and next the effects of the most dominent processing conditions, such as withdrawal speed of the substrate and the cam profile, on the shape of the growing billet are studied. Process conditions are obtained to produce a billet with uniform diameter and flat top surface, and an ASP30 high speed steel billet is manufactured using the same process conditions established from the simulation.imulation.

A study on the performance improvement of the quality prediction neural network of injection molded products reflecting the process conditions and quality characteristics of molded products by process step based on multi-tasking learning structure (다중 작업 학습 구조 기반 공정단계별 공정조건 및 성형품의 품질 특성을 반영한 사출성형품 품질 예측 신경망의 성능 개선에 대한 연구)

  • Hyo-Eun Lee;Jun-Han Lee;Jong-Sun Kim;Gu-Young Cho
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.72-78
    • /
    • 2023
  • Injection molding is a process widely used in various industries because of its high production speed and ease of mass production during the plastic manufacturing process, and the product is molded by injecting molten plastic into the mold at high speed and pressure. Since process conditions such as resin and mold temperature mutually affect the process and the quality of the molded product, it is difficult to accurately predict quality through mathematical or statistical methods. Recently, studies to predict the quality of injection molded products by applying artificial neural networks, which are known to be very useful for analyzing nonlinear types of problems, are actively underway. In this study, structural optimization of neural networks was conducted by applying multi-task learning techniques according to the characteristics of the input and output parameters of the artificial neural network. A structure reflecting the characteristics of each process step was applied to the input parameters, and a structure reflecting the quality characteristics of the injection molded part was applied to the output parameters using multi-tasking learning. Building an artificial neural network to predict the three qualities (mass, diameter, height) of injection-molded product under six process conditions (melt temperature, mold temperature, injection speed, packing pressure, pacing time, cooling time) and comparing its performance with the existing neural network, we observed enhancements in prediction accuracy for mass, diameter, and height by approximately 69.38%, 24.87%, and 39.87%, respectively.

A Study on the Sound Pressure Characteristics of Korean High-Speed Trains (고속철도차량의 주행 속도에 따른 음압 특성 도출 연구)

  • Noh, Hee-Min;Cho, Jun-Ho;Choi, Sun-Hoon;Hong, Suk-Yoon
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.670-677
    • /
    • 2011
  • In this research, noise of the Korean high-speed train running at different speed from 150 to 300 km/h was measured by using microphones and the difference of sound pressure according to its driving velocities was analyzed. In addition, sound pressure characteristics of front, pantograph, bogies and between-car sections of the Korean high-speed trains were deduced by applying delay and sum beam-forming method using a microphone array. From the research, the effects of locations of the high-speed train were investigated. The results of this research can be utilized to reduce noise of a high-speed train.

  • PDF

The Forming Characteristic of Rotary Swaging Process. (로터리 스웨이징 공정의 성형성 연구)

  • Im, Seong-Ju;Yun, Deok-Jae;Na, Gyeong-Hwan
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.432-438
    • /
    • 1998
  • The process variables i.e. the speed of forming, the ratio of thickness to diameter the shape of formed materials and the reduction of area were selected in order to study the process of the rotary swaging. It was found that the process variables affected the quality of products, i.e. the hardness the surface roughness and the degree of precision of products. Variation of hardness in deformed samples was mainly dependent on the reduction of area. Upon forming tubes applying the t/D ration higher than 1/10 led to the formation of defects on products which may be reduced by application of mandrels.

  • PDF

Blank Shape Design Process for a Hot Stamped Front Pillar and its Experimental Verification (프론트필러의 핫스템핑 공정설계를 위한 블랭크형상의 최적화 연구)

  • Kim, J.T.;Kim, B.M.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.186-194
    • /
    • 2012
  • Hot stamping is a forming method that offers various advantages such as superior mechanical properties, good formability, and very small springback. However, relatively large-sized parts, such as front pillars, exhibit poor formability when hot stamped due to the limited material flow and thickness reduction imparted by the process. This reduction in thickness can also lead to cracks. One of the reasons is the relatively high friction between the sheet and the die. In this study, in order to obtain the optimal conditions for hot stamping of front pillars, various process parameters were studied and analyzed using the sheet forming software, J-STAMP. The effects of various parameters such as the die structure, blank shape, blank holding force, punch speed, clearance(upper and lower dies) and distance block were analyzed and compared.

A Study on the Numerical Friction Model for Extrusion (압출성형을 위한 마찰수식 모델에 관한 연구)

  • Oh P. K.
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.14-20
    • /
    • 2005
  • To carry out perfectly the forming analysis of the extruding products, it is necessary that the friction boundary condition between dies and blanks should be worked out the accurate numerical friction models. But, the existing numerical models of the extrusion may be large different from the actual conditions. In this study, accurate analysis of the extrusion forming for the variation of pressure and velocity should be subjected. It is to develop the accuracy of the numerical friction models and potentialize to apply for the high speed forming work in the extrusion. Therefore, the results should improve the accuracy, cause the energy saving for the extrusion and finally expand the applying areas of the results.

Comparison of Warm Deep Drawability of Stainless Sheet Between Crank Press and Hydraulic Press (크랭크 프레스와 유압 프레스에서 스테인리스 강판의 온간 드로잉성 비교)

  • 김종호;최치수;나경환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.178-185
    • /
    • 1995
  • Warm deep drawing for optimum forming conditions to give the maximum drawing depth is investigated and compared with the results at room temperature. Experiments which draw square cups of STS 304 stainless steel sheet under the constant lubrication condition of teflon film made both in a crank and hydrqulic press for two kinds of specimens . The maximum drawing depth at warm forming condition reaches 1.4 times the drawing depth at room temperature in a crank press, whereas 1.6 times in a hydrqulic press, and also more uniform distribution of thickness in case of warm deep drawn cup is observed. The effects of other factors on formability , such as forming temperature, speed of press and cooling of punch are examinnied and discussed.

  • PDF

Bending Characteristics of DP980 Steel Sheets by the Laser Irradiation (DP980강판의 레이저 조사에 따른 굽힘 변형특성 연구)

  • Song, J.H.;Zhang, Y.;Lee, J.S.;Park, S.J.;Choi, D.S.;Lee, G.A.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.378-383
    • /
    • 2012
  • Laser forming is an advanced process in sheet metal forming in which a laser heat source is used to shape the metal sheet. This is a new manufacturing technique that forms the metal sheet only by a thermal stress. Analyses of the temperature and stress fields are very important to identify the deformation mechanism in laser forming. In this paper, temperature distributions and deformation behaviors of DP980 steel sheets are investigated numerically and experimentally. FE simulations are first conducted to evaluate the response of a square sheet in bending. The effects of process parameters such as laser power and scanning speed are then analyzed numerically and experimentally. It is observed that experimental and numerical results are in good agreement. These results provide a relationship between the line energy and the angles for laser bending of DP980 steel sheets.