• Title/Summary/Keyword: Forming Speed

Search Result 379, Processing Time 0.029 seconds

Experimental Study on the Parameters Affecting Deep Drawing Process (딥 드로잉 공정에 미치는 영향인자에 관한 실험적 연구)

  • 정동원;이승훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1593-1596
    • /
    • 2003
  • Sheet metal forming process is a non-linearity problem which is affected by various process variables, such as geometric shape of punch and die, frictional characteristic, etc.. Therefore, the knowledge of the influence of the process variables is needed in the design of sheet metal working processes. In this paper, deep drawing tests for blank holding force, punch speed and lubrication between sheet material and tool were carried out to investigate the influence upon sheet formability. Experimental results were discussed about the defects on the deformation behaviors during the forming process.

  • PDF

A Study on the Experimental Evaluation of AZ31B Sheet Formability with Circle and Rectangle Shape (AZ31B 마그네슘합금 판재의 원형 및 사각 딥드로잉 성형성의 실험적 평가)

  • Kwon, K.T.;Kang, S.B.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.250-253
    • /
    • 2007
  • Since Mg alloy has many attractive advantages among the practically used metals, many researchers have been studied to develop useful process and material. The crystal structure of Magnesium was hexagonal close-packed, so its formability was poor at room temperature. But formability was improved in high temperature with increasing of slip planes, twins, dynamic recrystallization. In this study The formability of AZ31B magnesium sheet is estimated according to the variable temperatures, forming speed, thickness, blank holding force. The results of deep drawing experiences show that the formability is well at the range from 200 to $250^{\circ}C$, 20 to 60 mm/min forming speed and 2.5 to 3KN blank holding force.

  • PDF

A Study on Tensile Behavior of Transparent Polycarbonate (PC) Plate in the High Temperature (투명 폴리카보네이트 판재의 고온 인장 거동에 관한 연구)

  • Lee, Ho Jin;Ahn, Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • Recently, several researchers made their endeavor to manufacture the photobioreactor(PBR) with characteristic shapes form vacuum and blow forming process. Hence, behaviors of the transparent polycarbonate(PC) plate in the high temperature region should be examined to obtain the desired PBR case via vacuum and blow forming processes. The aim of this paper is to investigate tensile behavior of PC plate in the high temperature. Various tensile tests were performed using high temperature tensile testing machine. The influence of tensile speed, thickness and ambient temperature on tensile behavior in the high temperature was examined. The flow stress and tensile strength augmented when the tensile speed increased. In order to obtain proper flow curves with strain rate effects for different temperature of specimen, G'sell-Jonas model was adopted. The material constants of the G'sell-Jonas model were estimated. The flow curves of the PC plate considering the tensile speed, specimen thickness and temperature were obtained.

Effects of Operation Conditions on Hydrocarbon Components Emitted from SI Engine with Gaseous Fuels (기체 연료를 사용한 전기점화기관에서 운전조건이 HC 배출물 성분에 미치는 영향)

  • 박종범;최희명;이형승;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.108-121
    • /
    • 1998
  • Using gas chromatography, the light hydrocarbon emissions were analyzed from SI engine fueled with methane and liquified petroleum gas(LPG), and the effects of fuel and engine operating condition were discussed. For this purpose, 14 species of light hydrocarbon including 1, 3-butadiene were separated, calibrated with standard gas, and measured from undiluted emissions. The brake specific hydrocarbon emission(BSHC) and ozone forming potential(BSO)3 were calculated and discussed with the changes of fuel, engine speed, load, fuel/air equivalence ratio, coolant temperature, and spark timing. As a result, exhaust emission was composed of mainly fuel composed of mainly fuel comp- onent and other olefin components of similar carbon number. The olefin components such as ethylene and propylene determine most of the ozone forming potential. The fraction of fuel component in total hydrocarbon emission was bigger with methane fuel than with LPG fuel. Also fuel fraction increased at high speed or high speed or high temperature of exhaust gas, and to lesser extent with high coolant temperature and retarded spark. However, the effect of equivalence ratio had different tendency according to fuels.

  • PDF

The Effects of Heat-treating Conditions on Wear Characteristics of High Speed Steel by Powder Metallurgy (분말고속도공구강의 미끄럼 마모특성에 미치는 열처리조건의 영향)

  • Lee, H.Y.;Bae, J.S.;Kim, Y.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.6
    • /
    • pp.405-411
    • /
    • 2000
  • The effects of added elements, such as Co or Nb, on wear properties of high speed steel by powder metaliurgy(PM-HSS) had been eluminated in auther's previous paper. In addition, it is generally known that the wear properties of materials have been influenced by heat-treating conditions as well. Therefore, a study has been done to clarify the effects of heat-treating conditions on wear properties of PM-HSS. The wear tests have been performed under the same conditions as the previous paper using heat-treated PM-HSS(5%Co-1%Nb) with different quenching and tempering temperatures. The result of this paper shows that wear resistance of PM-HSS is improved with relatively high quenching temperature. However, tempering temperature is not sensitive to the wear resistance in the range of high quenching temperature. It may be deduced by the fact that the shear strength of matrix by strengthening mechanisms due to not only the quenching aging but also dispersion-hardening is improved.

  • PDF

Holographic Data Grating Formation of AsGeSeS Single layer, Ag/AsGeSeS double layer And AsGeSeS/Ag/AsGeSeS Muti-layer Thin Films with the DPSS Laser (DPSS Laser에 의한 AsGeSeS,Ag/AsGeSeS 와 AsGeSeS/Ag/AsGeSeS 박막의 홀로그래픽 데이터 격자형성)

  • Koo, Yong-Woon;Koo, Sang-Mo;Cho, Won-Ju;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.55-56
    • /
    • 2006
  • We investigated the diffraction grating efficiency by the DPSS laser beam wavelength to improve the diffraction efficiency on AsGeSeS & Ag/ AsGeSeS thin film. Diffraction efficiency was obtained from DPSS(532nm)(P:P)polarized laser beam on AsGeSeS, Ag/ AsGeSeS and AsGeSeS/Ag/AsGeSeS thin films. As a result, for the laser beam intensity, 0.24 mW, single AsGeSeS thin film shows the highest value of 0.161% diffraction efficiency at 300 s and for 2.4 mW, it was recorded with the fastest speed of 50 s, which the diffraction grating forming speed is faster than that of 0.24 mW beam. Ag/ AsGeSeS and AsGeSeS/ Ag/ AsGeSeS multi-layered thin film also show the faster grating forming speed at 2.4 mW and higher value of diffraction efficiency at 0.24 mW.

  • PDF

Computational strategies for improving efficiency in rigid-plastic finite element analysis (강소성 유한요소해석의 안정화와 고능률화에 관한 연구)

  • ;;Yoshihiro, Tomita
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.317-322
    • /
    • 1989
  • Effective computational strategies have been proposed in the evaluation of stiffness matrices of rigid-plastic finite element method widely used in simulation of metal forming processes. The stiffness matrices are expressed as the sum of stiffness matrices evaluated by reduced integration and Liu's stabilization matrices which control the occurrence os zero-energy mode due to excessive reduced integration. The proposed method has been applied to the solution of fundamental 3-dimensional problems. The results clarified that the deformed mesh configuration was remarkably stabilized and computation speed attained about 3 times as fast as that of conventional 3-dimensional analyses. Furthermore, computation speed increases by a factor 60 when parallel computation is introduced. This speed has a tendency to increase as the total degree of freedom increases. As a result, this rigid-plastic finite element method enables us to analyze real 3-dimensional forming processes with practically acceptable computation time.

Tool Temperatures to Maximize the Warm Deep-drawability of AZ31B Sheets (AZ31B 판재의 온간 디프드로잉 성형성 극대화를 위한 금형 온도)

  • Choi, S.C.;Kim, H.J.;Kim, H.Y.;Hong, S.M.;Shin, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.66-70
    • /
    • 2008
  • In this study, the formability of AZ31B magnesium alloy sheets was investigated by the analytical and experimental approaches. Tensile tests and limit dome height tests were rallied out at several temperatures between $25^{\circ}C$ and $300^{\circ}C$ to obtain the mechanical properties and forming limit diagram (FLD). The FLD-based criterion considering the strain-path and the blank temperature was used to predict the forming limit in a deep-drawing process of cross-shaped cup by finite element analysis. This criterion proved to be very useful in determining the optimal process conditions such as blank shape, punch velocity, minimum comer radius, fillet size, and so on, through the comparison between FEA and experimental data. In particular, the temperature of each tool that provided the best formability of the blank was determined by coupled temperature-deformation analyses. A practical method that can greatly reduce the forming time by increasing the punch speed during the forming process was suggested.

  • PDF

Fitting Pipe Flange Process Research Using Orbital Forming (오비탈 성형을 이용한 피팅 파이프 플랜지 공정연구)

  • Kim, TaeGual;Park, JoonHong;Park, YoungChul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.57-62
    • /
    • 2015
  • A large variety of pipe flanges are required in the marine and construction industry. Pipe flanges are usually welded or screwed to the pipe end and are connected with bolts. This approach is very simple and has been widely used for a long time; however, it results in high development costs and low productivity, and the products made through this approach usually have safety problems in the welding area. In this research, a new approach for forming pipe flanges based on cold forging and the floating die concept is presented. This innovative approach increases the effectiveness of the material usage and saves time and costs compared with the conventional welding method. To ensure the dimensional accuracy of the final product, finite element analysis (FEA) was carried out to simulate the process of cold forging, and orthogonal experiment methods were used to investigate the influence of four manufacturing factors (stroke of distance, pin die angle, forming of pipe diameter, and speed of the die) and predict the best combination of them. The manufacturing factors were obtained through numerical and experimental studies, which show that the approach is very useful and effective for the forming of pipe flanges and could be widely used in the future.