• Title/Summary/Keyword: Forming Roll

Search Result 222, Processing Time 0.024 seconds

Fabrication of Metallic Sandwich Plates with Inner Dimpled Shell Structure and Static Bending Test (딤플형 내부구조 금속 샌드위치 판재의 제작 및 정적 굽힘 실험)

  • Seong Dae-Yong;Jung Chang-Gyun;Yoon Seok-Joon;Lee Sang-Hoon;Ahn Dong-Gyu;Yang Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.653-661
    • /
    • 2006
  • Metallic sandwich plates with various inner cores have important new features with not only ultra-light material characteristics and load bearing function but also multifunctional characteristics. Because of production possibility on the large scale and a good geometric precision, sandwich plates with inner dimpled shell structure from a single material have advantages as compared with other solid sandwich plates. Inner dimpled shell structures can be fabricated with press or roll forming process, and then bonded with two face sheets by multi-point resistance welding or adhesive bonding. Elasto-plastic bending behavior of sandwich plates have been predicted analytically and measured. The measurements have shown that elastic perfectly plastic approximation can be conveniently employed with less than 10% error in elastic stiffness, collapse load, and energy absorption. The dominant collapse modes are face buckling and bonding failure after yielding. Sandwich plates with inner dimpled shell structure can absorb more energy than other types of sandwich plates during the bending behavior.

FEA of Copper Tube Rolling Process Using the Planetary Rolling Mill (유성압연기를 사용한 동관 압연공정의 유한요소해석)

  • Lee, Jung-Kil;Han, Ki-Beom;Kim, Kwan-Woo;Choe, Jong-Woong;Kim, Jae-Hun;Cho, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.303-309
    • /
    • 2010
  • Copper tube rolling process using the planetary rolling mill has been studied by using finite element method. This rolling is process that makes copper tube by three-roll with mannesmann method. Also, rolling process has started from the cold working and finished to the hot working. This rolling process has more advantage that make reduction of process and cost than existing extrusion. This process includes various and complex process parameters. Each of the process parameters affects forming result. Therefore, all of the process parameters should be considered in copper tube rolling. Rolling process for copper tube was successfully simulated and it should be useful to determine optimal rolling condition.

Progressive Process Design for Delta Sash in Vehicles (차량용 델타샤시의 프로그레시브 공정 설계)

  • Ko, Young Jun;Kwak, Hyo Seo;Bae, Jun Ho;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1161-1170
    • /
    • 2014
  • Delta sash is an important part of automobile door, which has the functions of supporting and guiding seesaw of car's window, preventing dust and air from outside. In previous manufacturing process, each part of the delta sash was independently formed by tandem processes, and rubber is bonded to steel by poisonous glue. So, the previous processes, including roll forming process and toxic gases, had low production rate and high failure rate. In this study, progressive process design of the delta sash was proposed in order to increase productivity and high utilization of the materials. And instead of the poisonous glue used for adhesion of rubber in the previous tandem process, embossing and piercing processes were designed in the new guide to help the rubber to adhere well to steel. And the optimal piercing distance was designed to ensure structural safety, and prototypes were manufactured for verifying reliability of the processes.

Numerical Prediction of the Outer Diameter for SAW Pipes Formed by Press-Brake Bending (프레스-브레이킹 굽힘 공정을 이용한 SAW 후육강관의 외경 예측을 위한 해석적 연구)

  • Park, G.B.;Kang, B.K.;Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.116-123
    • /
    • 2016
  • Press-brake bending is used to shape flat and thick plates into a targeted circular configuration without excessive localized thinning or thickening. A brake bending press called 'a knife press bending apparatus' has been widely adopted to manufacture thick, large and long pipe from initially thick plate. Submerged Arc Welded (SAW) pipes are also produced by employing press-brake bending. These pipes are mainly used for oil, natural gas and water pipelines. The principal process variables for press-brake bending can be summarized as stroke of the press-brake knife, the distance between both roll in the lower die, and the feeding length of the plate. Many combinations of these process variables are available, thus various pipe diameters can be realized. In the current study, a series of repetitive numerical simulations by feeding a thick plate with initial thickness of 25.4mm were conducted with the consideration of elastic recovery. Furthermore, an index for SAW pipe production is proposed which can be widely used in industry.

$MgB_2$ Sheets using Mixture of Mg and B Powders by Powder Roll Compaction (Mg과 B 혼합분말을 이용하여 분말압연 공정으로 제조된 $MgB_2$ 초전도 판재연구)

  • Chung, K.C.;Chang, S.H.;Sinha, B.B.;Kim, J.H.;Dou, S.X.
    • Progress in Superconductivity
    • /
    • v.13 no.3
    • /
    • pp.184-188
    • /
    • 2012
  • $MgB_2$ superconducting sheets have been fabricated by powder rolling method using mixture of Mg and B powders. Sheet-type $MgB_2$ bulk samples of ~10 mm width and 50-100 mm long were squeezed out after compacted by two rotating rolls of 130 mm diameter with gap distance of 0.5 mm and speed of ~40 cm/min (~1 rpm). The nominal composition of Mg, which is ductile metal, was added up to 30% to facilitate forming the $MgB_2$ sheets. The annealed samples at $900^{\circ}C$ and 3 hrs showed superconducting transition temperature of ~32 K and critical current densities at zero fields were ${\sim}10^5A/cm^2$ at 5 K and ${\sim}5{\times}10^4A/cm^2$ at 20 K.

Design and Fabrication of Single-person Neighborhood Electric Vehicle with Streamlined Car Body (유선형 차체가 적용된 1인용 저속 전기 자동차의 설계 및 제작)

  • Na, Yeong-min;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.55-63
    • /
    • 2018
  • In recent years, with the growing interest in electric vehicles, the development of a Neighborhood Electronic Vehicle (NEV) made for urban driving is accelerating. Existing NEVs are set to ~0.3 - 0.35 with more emphasis on performance rather than minimizing air resistance. In this paper, a NEV with a streamlined car body is proposed. The shape of dolphins and sharks was applied to the car body to minimize the air resistance generated when driving. Also, the performance of the vehicle was estimated by calculating the traction force and the roll couple, etc. To check the drag coefficient of the car body, finite element analysis software (COMSOL Multiphysics) was used. The frame of the vehicle is divided into the forward and the rear parts. Carbon pipe is used for the frame by MIG welding. The car body of the vehicle was fabricated by forming carbon fiber. This study confirmed the general possibility of using NEVs through driving experiments.

Drawing Process Design and Mechanical Properties Control for High Strengthening of CP Titanium (순수 타이타늄 고강도화를 위한 인발공정설계 및 기계적 특성 제어 기술)

  • Choi, Seong Woo;Park, Chan Hee;Lee, Sang Won;Yeom, Jong Taek;Hong, Jae Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.77-81
    • /
    • 2017
  • CP (Commercially Pure) titanium has been widely used in various industries such as in energy plants and bio-materials because of an excellent corrosion resistance and its non-toxicity to the human body. But there are limitations for usage as structural materials due to low strength. The tensile properties of CP titanium could be improved by microstructure refinement such as in a SPD (Severe Plastic Deformation) process. However, high strengthening of CP titanium wire is impossible by SPD processes like ECAP (Equal Channel Angular Pressing), HPT (High-Pressure Torsion), and the ARB (Accumulative Roll Bonding) process. The study purposes are to increase the strength of CP titanium wire by optimization of the cold drawing process and the harmonization with mechanical properties by heat treatments for the next forming process. The optimization process was investigated with regard to the design of drawing dies and the reduction ratio of cross sections. The elongations of high strength CP titanium were controlled by heat treatment.

Effect of Stainless Steel Properties on Performance of Multi-layer Bellows (다층형 벨로우즈의 성능에 미치는 스테인리스강 물성의 영향)

  • Suh, C.H.;Oh, S.K.;Jung, Y.C.;Lee, R.G.;Park, M.K.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.223-228
    • /
    • 2009
  • Generally ferritic stainless steels are used for parts of exhaust system in commercial vehicle, because they have many advantages as low price and high corrosion resistant compared with austenitic stainless steels. Even though ferritic stainless steels have such various merits, austenitic stainless steels have been used to manufacture multi-layer bellows with complex geometry because of their high ductility. Recently, the mechanical properties of the ferritic stainless steels are getting improved and alternating austenitic stainless steel. In this paper, the possibility of mass production of multi-layer bellows made of ferritic stainless steel like MH1 and 443CT was studied. Tensile test, ridging test and corrosion test were carried out to observe material properties of STS304, MH1 and 443CT. Three types of prototype bellows were made using STS304, MH1 and 443CT stainless steels, and stiffness and fatigue tests were carried out to evaluate performance of the prototype bellows.

Controlling the Depth of Microchannels Formed during Rolling-based Surface Texturing

  • Bui, Quang-Thanh;Ro, Seung-Kook;Park, Jong-Kweon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.410-420
    • /
    • 2016
  • The geometric dimension and shape of microchannels that are formed during surface texturing are widely studied for applications in flow control, and drag and friction reduction. In this research, a new method for controlling the deformation of U channels during micro-rolling-based surface texturing was developed. Since the width of the U channels is almost constant, controlling the depth is essential. A calibration procedure of initial rolling gap, and proportional-integral PI controllers and a linear interpolation have been applied simultaneously to control the depth. The PI controllers drive the position of the pre-U grooved roll as well as the rolling gap. The relationship between the channel depth and rolling gap is linearized to create a feedback signal in the depth control system. The depth of micro channels is studied on A2021 aluminum lamina surfaces. Overall, the experimental results demonstrated the feasibility of the method for controlling the depth of microchannels.

A study on wear damage of SKD11 steel material for a cutting mold jig (SKD11 절단금형치구용 소재의 마모손상에 관한 연구)

  • Nam, Ki-Woo;Kim, Cheol-Su;Ahn, Seok-Hwan
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.5-13
    • /
    • 2016
  • This study is on wear damage of the material for a molding machine that be used at finally cutting of metal beam made in roll forming process of vehicle bump beam process line. SKD11 steel was used with the material for cutting mold jig. In the cutting mold jig, Ti diffusion heat treatment after vacuum heat treatment was carried out for upgrade of surface hardness and anti-wear. Also, the heat treatments by various methods were performed to compare the wear damage degree against above the existing heat treatment. Wear loss and friction coefficient were obtained from wear test. And, micro Vickers hardness values were compared with damaged parts or not of cutting mold jig. Micro Vickers hardness value appeared higher at the undamaged part by Ti diffusion heat treatment. The micro Vickers hardness well followed a two-parameter Weibull probability distribution.