• 제목/요약/키워드: Forming Load of Punch

검색결과 63건 처리시간 0.027초

중첩된 박판간의 결합을 위한 접착-성형공정 (Form-Joining Process with the Aid of Adhesive for Joining of Sheet Metal Pair)

  • 정창균;김태정;양동열
    • 소성∙가공
    • /
    • 제13권4호
    • /
    • pp.342-349
    • /
    • 2004
  • The form-joining process (or clinching) uses a set of die and punch to impose the plastic deformation-induced geometric constraint on a sheet metal pair. The joining strength from the process ranges 50-70 percent of that of the resistance spot welding. In this paper, a new form-joining process with the aid of an adhesive is proposed in which an epoxy adhesive is applied to a sheet metal pair, and before it cures the pair is clinched to cause the geometric constraint in the form of a protrusion. In order to reduce the forming load and the height of protrusions, a new die and punch set with a very small clearance is devised to reduce the depth of drawing and the forming load. Taguchi method is employed to find the optimal values of design parameters. To implement each case of the orthogonal array, the finite element method is used. The experiments show that in the tensile-shear test, the bonding strength of the new form-joining process with an epoxy adhesive is approximately the same as that of the resistance spot welding; and in comparison with the other two form-joining processes with an epoxy adhesive, the height of protrusions is reduced by more than 65 percent and the forming load by 50 percent.

슬래브법을 이용한 회전 다이 플랜지 업세팅 공정 해석 (An analysis of torsional flange-upsetting process based on slab method)

  • 박재훈
    • Design & Manufacturing
    • /
    • 제18권2호
    • /
    • pp.29-34
    • /
    • 2024
  • This study intends to reduce forming load by adding die rotation to flange-upsetting process. Materials arc formed by the compression and rotational torque which are accrued from rotation of the lower die accompanied by axial compression of the punch. For the theoretic analysis of flange-upsetting process using rotation die, slab method was used. Furthermore, for the verification of the theoretic analysis results, FEM simulation using DEFORM 3D a commercial software was done, and through the model material experiment using Prasticine, the results were compared and reviewed. Flange-upsetting process using rotation die shows reduced forming load compared with process without die rotation and demonstrates uniform distribution of strain. And as for the effect of the reduction of forming load, the less the aspect ratio(h0/d0) and the greater friction coefficient, the greater effect is. With increase in die rotation velocity, the effect of forming load reduction also increases little by little, but its effect on forming load reduction is very negligible compared with other forming parameters. Theoretic analysis results and simulation results coincided pretty well. The flange-upsetting process using die rotation are evaluated as useful process that can produce reduction of forming load and uniform strain.

유한요소법에 의한 마그네슘 합금판의 성형성 해석 (Analysis of Formability of Magnesium Alloy using Finite Element Method)

  • 강대민;박경동;황종관
    • 한국기계가공학회지
    • /
    • 제3권2호
    • /
    • pp.60-66
    • /
    • 2004
  • Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. In this paper, It was focussed on the drawability factors on the square cup deep drawing by PAM-STAMP with using magnesium alloy to reduce car weight as well as to draw much attention from the viewpoint of environmental preservation high rigidity, In order to predict the effect of drawability factors, the relationships between punch load and punch stroke, the relationships between thickness strain and distance, and are used. According to this study, the results of simulation will give engineers good information to access the drawability of square cup deep drawing at warm temperature.

  • PDF

레이디얼압출의 성형특성에 관한 연구 (A Study on the Forming Characteristics of Radial Extrusions)

  • 이수형;황병복
    • 소성∙가공
    • /
    • 제8권6호
    • /
    • pp.604-611
    • /
    • 1999
  • This paper is concerned with the family of parts that generally feature a central hub with radial protrusions. As opposed to conventional forward and backward extrusion, in which the material flows in a direction parallel to that of the punch or die motion, the material flows perpendicular to the punch motion in radial extrusion. Three variants of radial extrusion of a collar or flange are investigated. Case I involves forcing a cylindrical billet against a flat die, Case II involves deformation against a stationary punch recessed in the lower die, and Case III involves both the upper and lower punches moving together toward the center of the billet. Extensive simulational work is performed with each case to see the process conditions in terms of forging load, balanced and symmetrical flow in the flange. Also, the effect of the gap size and die corner radii to the material flow are investigated. In this study, the forming characteristics of radial extrusion will be considered by comparing the forces, shapes etc. The design factors during radial extrusion are investigated by the rigid-plastic FEM simulation.

  • PDF

Socket Forming에 관한 상계해석 (An Upper-Bound Analysis of the Socket Forming Process)

  • 황범철;홍승진;배원병
    • 한국정밀공학회지
    • /
    • 제17권8호
    • /
    • pp.151-156
    • /
    • 2000
  • A kinematically-admissible velocity field is proposed to determine the forming load the average extruded length and the velocity distribution in the forward and backward extrusion process of a socket. Experiments are carried out with antimony-lead billets at room temperature using the rectangular punch and the hexagonal die. The theoretical predictions of the forming load and the average extruded length are in good agreement with the experimental results.

  • PDF

기어 치형의 미성형 구간 최소화를 위한 배압 냉간 단조 성형 해석 (Back-pressure cold forging analysis to minimize non-forming area of gear teeth)

  • 이용우;김장훈;권종호
    • 한국산학기술학회논문지
    • /
    • 제17권7호
    • /
    • pp.256-262
    • /
    • 2016
  • 본 연구에서는 자동차 자동변속기의 핵심 부품인 아웃풋 허브 및 리액션 허브의 치형 미성형 구간의 최소화를 위한 배압 냉간 단조 성형 공법에 대한 유한요소해석을 수행하였다. 변위제어해석으로 펀치 하중 및 슬리브 배압력을 도출하였고, 도출된 하중 및 배압력을 이용한 하중제어해석을 수행하여 상호 검증을 하였다. 변위제어해석과 하중제어해석이 유사한 경향을 보였으며, 아웃풋 허브와 리액션 허브의 미성형 구간을 기준 이하로 만족시키기 위한 펀치 하중과 슬리브 배압력을 구하였다. 리액션 허브의 펀치 하중이 아웃풋 허브 보다 큰 이유는 상부 치형 가공 시 리액션 허브의 단면감소율이 아웃풋 허브 보다 크기 때문인 것으로 판단되며, 슬리브 배압력이 아웃풋허브와 리액션 허브에서 차이가 나는 것 또한 슬리브 단면적의 차이에 기인한 것으로 판단된다. 본 연구에서 제시한 배압 냉간 단조 성형 해석 과정과 결과를 적용한 실제 치형 가공의 미성형 구간 결과와 비교하여 검증 평가하였으며, 치형 제품의 품질 개선 및 생산성 향상을 위해 요구되는 성형가공 조건을 도출하는데 유용하게 활용될 수 있을 것이다.

레이디얼 압출에서 플랜지의 성형한계 (The Forming Limit of Flange in the Radial Extrusion)

  • 고병두;장동환;최호준;임중연;황병복
    • 소성∙가공
    • /
    • 제12권3호
    • /
    • pp.228-235
    • /
    • 2003
  • In this paper, the workability of flange in the radial extrusion is analyzed in terms of the deformation pattern, the punch load and the forming limit by using simulation and experiment. A single action pressing is applied to both simulation and experiment. The analysis in this study is focused on the transient extrusion into the gap in radial direction with various gap heights and die corner radius. Based on the surface strains where surface cracking occurs, the forming patterns and strain-fracture relationships in producing radially extruded flange are obtained.

Al5083 초소성 합금과 Zr-BMG의 Cavity 위치에 따른 마이크로 성형연구 (A Study on the Micro Forming of Al-based Superplastic Alloy and Zr-BMG for the Cavity Position)

  • 손선천;박규열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.258-262
    • /
    • 2008
  • Micro forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). In this study, the micro forming property was studied, using Al5083 superplastic alloy with micro grain, suitable for the micro forming process and Zr-BMG amorphous with pseudo-superplastic phenomena in the supercooled liquid state. Micro forming experiments under stastic load status showed that distortion by slip and spin of the grain system and slip inside the grain was observed in the Al5083 superplastic alloy. In case of Zr-BMG, because there is no grain, the distribution of the forming property was similar to the load distribution between punch and metal.

  • PDF

유한요소법에 의한 정사각컵 디프드로잉 성형에 미치는 성형인자에 관한 연구 (A Study on the Formability Factors of Sheet Metal in Deep Drawing of Square Cup by FEM)

  • 이명섭;황종관;강대민
    • 한국해양공학회지
    • /
    • 제14권4호
    • /
    • pp.86-91
    • /
    • 2000
  • Numerical simulation of sheet metal forming for panels as other components has wide acceptance in the automotive industry. Therefore this paper was focused in the drawability factors (which are friction coefficient , radius of die and punch ) on the square cup deep drawing by the explicit finite elements code $PAM-STAMP^{TM}$. The computed results are compared with the experimental results to show the validity of the analysis. In order to compare the simulation results with the experiment results and predict the effect of drawability factors, the relationships between punch load punch stroke, and the relationships between thickness strain and distance are used. According to this study, the results of simulation by using $PAM-STAMP^{TM}$ will give engineers good information to access the drawability of square drawing.

  • PDF

스파이더의 측방 압출 공정에 대한 UBET 해석 (A UBET Analysis on the Lateral Extrusion Process of a Spider)

  • 황범철;이희인;배원병
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1129-1133
    • /
    • 2001
  • An upper bound elemental technique(UBET) has been carried out to predict the forming load, the deformation pattern and the extruded length of the lateral extrusion of a spider for the automotive universal joint. For the upper bound analysis, a kinematically admissible velocity field(KAVF) is proposed. From the proposed velocity field, the upper bound load, the deformation pattern and the average length of the extruded billets are determined by minimizing the total energy consumption rate which is a function of unknown velocities at each element. Experiments are carried out with antimony-lead billets at room temperature using the rectangular shaped punch. The theoretical prediction of the forming load, the deformation pattern and the extruded length are good in agreement with the experimental results.

  • PDF