• 제목/요약/키워드: Forming Limit Curve

검색결과 36건 처리시간 0.021초

실험계획법을 이용한 성형한계곡선 최적화 연구 (Forming Limit Curve Optimization using Design of Experiments)

  • 임희택;이병주;임영목;김병기;김정한
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.386-389
    • /
    • 2008
  • Forming limit diagram is created by graphical illustration indicating major and minor strain. In order to provide the criterion for forming safety, FLC(forming limit curve) need to be fitted to the diagram. However, the standard method for the strain measurement and FLC plotting are not fixed yet, which results in inconvenience in digitalized analysis. In this study, new construction method for FLC was suggested in order to minimize operator dependency. For this purpose, major and minor strain were measured automatically and analyzed. Then, a second order equation is adopted to fit the FLC. Optimized by response surface method was performed to ensure particular characteristics of the FLC.

  • PDF

디지털 이미지 상관관계를 이용한 알루미늄 합금 판재의 성형한계도 평가 (Experimental Study on the Forming Limit Curve of Aluminum Alloy Sheets using Digital Image Correlation)

  • 김용배;박정수;송정한
    • 융복합기술연구소 논문집
    • /
    • 제5권1호
    • /
    • pp.7-12
    • /
    • 2015
  • Sheet metal formability can be defined as the ability of metal to deform without necking or fracture into desired shape. Every sheet metal can be deformed without failure only up to a certain limit, which is normally known as forming limit curve(FLC). In this paper, the dome stretching tests and tensile tests have been performed to obtain forming limit curve of aluminum alloy. During the experiment, failure strain is measured using digital image correlation(DIC) method. DIC method is a whole-field measurement technique that acquires surface displacements and strains from images information which characterized a random speckle as intensity grey levels. Recently years, this DIC method is being developed and used increasingly in various research. DIC results demonstrated the usefulness and ability to determine a strain.

역4차식 곡선근사에 의한 판재 성형한계변형률의 결정 (Determination of the Forming Limit Strain of Sheet Metal Using Inverse Quartic Curve Fitting)

  • 이주섭;김진동;김형종
    • 소성∙가공
    • /
    • 제22권6호
    • /
    • pp.328-333
    • /
    • 2013
  • The current study aims to determine the limit strains more accurately and reasonably when producing a forming limit curve (FLC) from experiments. The international standard ISO 12004-2 in its recent version (2008) states that the limit major strain should be determined by using the best-fit inverse second-order parabola through the experimental strain distribution. However, in cases where fracture does not occur at the center of the specimen, due to insufficient lubrication, the inverse parabola does not give a realistic fit because of its intrinsic symmetry in shape. In this study it is demonstrated that an inverse quartic function can give a much better fit than an inverse parabola in almost all FLC test samples showing asymmetric strain distributions. Using a quartic fit creates more reliable FLCs.

변형경로를 고려한 판재의 성형한계도 예측 (Prediction of Forming Limit Diagram Dependent on Strain History in Sheet Metal Forming)

  • 김낙수;최광규
    • 대한기계학회논문집A
    • /
    • 제25권7호
    • /
    • pp.1107-1118
    • /
    • 2001
  • The forming limit diagram introduced by Keeler and Goodwin has been used generally to analyze the formability of sheet metal. However, path dependent forming limit curves based on the state of strain can be explained only by a single criterion which is based on the state. In this study, experimental forming limits in strain space of some metal sheets are transformed into forming limit curves in stress space. Effects of yield criterion are investigated in transforming the forming limit curves. Some important design aspects which are based on the close prediction of movements in forming limit curves during sheet forming are concluded.

오일팬용 재료의 온간 성형한계도에 관한 연구 (Study on the forming Limit Diagram of Steel Sheets for the Oil Pan of Automobile at the Warm Forming Condition)

  • 이항수;오영근;최치수
    • 소성∙가공
    • /
    • 제9권6호
    • /
    • pp.670-680
    • /
    • 2000
  • The purpose of this study is to provide the database of forming limit diagram applicable to the warm forming of oil pan. The test materials are SCP1 and SCP3C with the thickness of 1.4mm which is used for the oil pan of automobile. The testing temperature is 5$^{\circ}C$~15$0^{\circ}C$ which is In the range of practical usage. The results are the forming limit diagram limiting dome height and the maximum punch load at each temperature such as 5$^{\circ}C$, $25^{\circ}C$, 6$0^{\circ}C$, 9$0^{\circ}C$, 12$0^{\circ}C$ and 15$0^{\circ}C$. From these results, we can see that the forming limit curves are translated depending upon the temperature and that FLC at low temperature is higher than at high temperature. Both of limiting dome height and maximum punch load also decrease as the temperature increases. Present results can be useful for die trial and forming analysis as a tool of evaluating the forming severity for the sheet metal forming processes at the warm working condition by comparing the practical strains with FLC.

  • PDF

순 티타늄 판재의 변형 특성 및 성형성 평가 (A Study on Plastic Deformation Characteristics and Formability for Pure Titanium Sheet)

  • 인정훈;정기조;이현석;김정한;김진재;김영석
    • 소성∙가공
    • /
    • 제27권5호
    • /
    • pp.301-313
    • /
    • 2018
  • In this paper, tensile test was performed on pure titanium sheet (CP Ti sheet) with HCP structure in each direction to evaluate mechanical and surface properties and analyze microstructural changes during plastic deformation. We also evaluated forming limits of Ti direction in dome-type punch stretching test using a non-contact three-dimensional optical measurement system. As a result, it was revealed the pure titanium sheet has strong anisotropic property in yield stress, stress-strain curve and anisotropy coefficient according to direction. It was revealed that twinning occurred when the pure titanium sheet was plastic deformed, and tendency depends differently on direction and deformation mode. Moreover, this seems to affect the physical properties and deformation of the material. In addition, it was revealed the pure titanium sheet had different surface roughness changes in 0 degree direction and 90 degree direction due to large difference of anisotropy, and this affects the forming limit. It was revealed the forming limit of each direction obtained through the punch stretching test gave higher value in 90 degree direction compared with forming limit in 0 degree direction.

회전 인크리멘탈 성형을 이용한 마그네슘 합금 판재의 성형한계 연구 (A Study of forming limit on rotational incremental forming of magnesium alloy sheet)

  • 박진기;배문기;유봉선;김영석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.456-461
    • /
    • 2008
  • Being a lightweight material, magnesium is increasingly employed in automotive parts. However, because of its hexagonal closed-packed (HCP) crystal structure, in which only the basal plane can move, the magnesium alloy sheets show low ductility and formability at room temperature. Thus the press forming of magnesium alloy sheets has been performed at elevated temperature within range of $200^{\circ}C{\sim}250^{\circ}C$. However, we confirmed that using rotational incremental forming magnesium alloy sheets were formed without any heating at previous study. In this study, at the forming of square cup using rotational incremental sheet forming, the strain distributions were obtained and it was compared with forming limit curve at neck (FLCN). Also, forming limit curves at fracture (FLCF) of magnesium alloy sheets were obtained at elevated temperature and it was compared with the strain distribution of square cup of magnesium alloy sheet. In this study, we confirmed that conventional forming limit curves can not predict rotational incremental forming.

  • PDF

금속 판재의 성형한계도 시험법에 관한 연구 (A Study on the Forming Limit Diagram Tests of Metal Sheets)

  • 장욱경;장윤주;김형종
    • 산업기술연구
    • /
    • 제30권A호
    • /
    • pp.49-57
    • /
    • 2010
  • A forming limit diagram (FLD) defines the extent to which specific sheet material can be deformed by drawing, stretching or any combination of those two. To determine the forming limit curve (FLC) accurately, it is necessary to perform the tests under well-organized conditions. In this study, the influence of several geometric or process parameters such as the blank shape and dimensions, strain measuring equipments, test termination time, forming speed and lubricants on the FLC is investigated.

  • PDF

액체로켓 연소기용 구리합금의 성형한계성 평가 (Forming Limit Evaluation of Copper Alloy for Liquid Rocket Combustion Chamber)

  • 류철성;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.194-197
    • /
    • 2007
  • 액체로켓 연소기 재생냉각 챔버의 제작에 사용되는 구리합금의 성형한계 곡선을 얻기 위하여 돔 장출 시험과 인장시험을 수행하였다. 성형한계 곡선에 대한 실험적인 연구를 위하여 인장시편을 사용하여 인장-압축 변형률 상태의 데이터를 얻었으며, 인장-인장의 변형률 상태를 얻기 위하여 돔 장출 시험용 시편을 사용한 돔 장출 시험 또한 수행하였다. 시험에 사용한 모든 시편은 제작방법에 따라 종 방향과 횡 방향시편으로 구분하였다. 시험 결과 인장-인장 변형률 상태에서 최대 주 변형률과 부 변형률은 62.3%와 58.6%이며 인장-압축 상태에서는 60.5%와 25.8%로 나타났다.

  • PDF