• Title/Summary/Keyword: Forming Limit

Search Result 355, Processing Time 0.03 seconds

Studies on the forming limits for optimization of the tool path in Dieless incremental sheet metal forming (무금형 점진 판재 성형에서 공구경로 최적화를 위한 성형한계에 관한 연구)

  • Lee S. J.;Kim M. C.;Lee Y. S.;Kwon Y. N.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.249-252
    • /
    • 2005
  • Recently, as the industrial demand for small quantity batch production of sheet metal components, the application of dieless forming technology to production of these component rise with the advantages of the reduction in manufacturing cost and time. In dieless forming processes, the determination of moving path of tool plays an important role in producing successfully formed parts. In order to obtain the optimized moving path of tool avoiding forming failure, it is necessary to examine the forming limit of sheet material. Therefore, in this study, as the new criterion to evaluate the formability of sheet material in dieless forming processes FDD(feeding depth diagram) with respect to feeding depth and punch diameter is proposed. Thus, the FDD for the sheet materials of STS304 and Ti-grade2 were obtained from a series of FDT(feeding depth test). In addition the possibility of the application of FLD in judging forming severity in dieless forming processes was investigated by comparing the results of FE analyses based on FLD and experimental FDT.

  • PDF

A Theoretical Investigation of Forming Limits of Voided Anisotropic Sheet Metals (기공을 포함한 이방성 판재의 성형한계 예측)

  • You Bongsun;Yim Changdong;Kim Youngsuk;Won Sungyeun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1139-1145
    • /
    • 2005
  • Most failures of ductile materials in metal forming processes occurred due to material damage evolution - void nucleation, growth and coalescence. In this paper, the modified yield function of Liao et al in conjunction with the Hosford's yield criterion is studied to clarify the plastic deformation characteristic of voided anisotropic sheet metals. The void growth of an anisotropic sheet under biaxial tensile loading and damage effect of void growth on forming limits of sheet metals are investigated. Also the characteristic length defining the neck geometry is introduced in M-K model to incorporate the effect of triaxial stress in necked region on forming limits. The forming limits theoretically predicted are compared with experimental data. Satisfactory agreement was obtained between the predictions and experimental data.

Optimal Blank Design using Virtual Try-Out Method (가상 트라이 아웃 방법을 이용한 최적 블랭크 설계)

  • Ko, Dae-Lim;Jung, Dong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.31-36
    • /
    • 2008
  • Sheet metal forming has some merits that are less loss of materials in process, less time-consuming and it makes mass product possible. The product produced by sheet metal forming process has high strength compared to the weight and better surface characteristics. Therefore, sheet metal forming process is a lot used in automobiles, aircrafts, electronics and appliances. This paper made the process design for forming Bracket Front Back Frame Lower, determined the blank shape and size using PAM-STAMP, commercial software and evaluated formability. It has been proved that the optimal blank through the result forming analysis has advantage in terms of formability and spring back compared to the rectangular blank.

  • PDF

A Study on the 2-Layered Sheet Metal Forming Analysis and Applications in Automotive Exhaust Component (2-Layer 블랭크를 적용한 자동차 배기 부품의 박판 성형 해석 및 적용)

  • Roh G. T.;Jeong W. S.;Moon M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.318-321
    • /
    • 2005
  • The shell part is made of 2-layered blank because of functional requirements. To investigate the draw formability in this kind of part, the 2-layered sheet metal forming analysis process should be stipulated. First of all, treatment of contact with each blank must be considered to prevent the penetration on the each blank. Subsequently, applying the draw bead force is considered carefully because application of drawbead force for analysis is different with equivalent drawbead force. Formability as like crack, neck and wrinkles is estimated by FLD(Forming Limit Diagram) and thinning. A feasibility of the 2-layered sheet metal forming analysis process study is verified compare 2-layered sheet metal forming analysis with experimental results.

  • PDF

Thin Sheet Metal Forming Process Analysis and Formability Evaluation using Electromagnetic Force (전자기력을 이용한 박판 성형 공정 해석 및 성형성 평가)

  • Seo, Y.H.;Heo, S.C.;Ku, T.W.;Song, W.J.;Kim, J.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.387-390
    • /
    • 2008
  • Electromagnetic forming (EMF) technology, which is one of the high speed forming methods, has been used for the forming process in various industry fields. Numerical approach by finite element simulation of the EMF process is presented in this study. The implicit code is used to obtain the numerical model of the time-varying currents that are discharged through the coil in order to obtain the transient magnetic forces. In addition, the body forces generated in the workpiece are used as the loading condition to analyze deformation of thin sheet metal workpiece using explicit code. Numerical approach for a dimpled shape by EMF process is carried out and the simulated results of the dimpled shape by EMF are reviewed in view of the deformed shape and formability evaluation.

  • PDF

Numerical prediction of bursting failure in bulge forming using a seamed tube (심용접 튜브를 사용한 벌지 성형에서의 터짐불량 예측)

  • Kim, J.;Kim, Y.W;B.S. Kang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.240-243
    • /
    • 2003
  • Finite element analyses for bursting failure prediction in bulge forming under combined internal pressure and independent axial feeding are carried out. By means of the FEM combined with Oyane's ductile fracture criterion based on Hills quadratic plastic potential, the forming limit and bursting pressure level are investigated for a seamed tube that comprises of weldment, heat affected zone(HAZ) and base material parts. Especially, in order to determine the material property of HAZ tensile tests for the base material and the weld metal are executed based on iso-strain approach. Finally, through a series of bulge forming simulations with consideration of the weldment and HAZ it is concluded that the proposed method would be able to predict the bursting pressure and fracture initiation site more realistically, so the approach can be extended to a wide range of practical bulge forming processes.

  • PDF

Variation of Material Characteristics of a Hot-formed AZ31 Magnesium Alloy (마그네슘 합금 AZ31의 온간성형과 재료특성변화에 관한 연구)

  • Suh, Chang-Min;Hor, Kwang-Ho;Kim, Hyo-Min;Suh, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.913-919
    • /
    • 2013
  • Magnesium alloys are known to be hard-forming materials at room temperature owing to their material structure. This study analyzes the optimal temperature conditions of warm-forming and the forming process by using a high-pressure laminating test and FM analysis, respectively. The effect of temperature on the fatigue limit was examined from the collected specimens by analyzing the material properties after the fatigue test. The material formed at a temperature of $230^{\circ}C$ shows occasional defects, but the best forming quality was obtained at $270^{\circ}C$. The optimal temperature for the forming process was found to be $250^{\circ}C$ considering the material quality and thermal efficiency. The overall fatigue life of specimens decreases with an increase in the processing temperature. The fatigue limit of AZ31 formed at $250^{\circ}C$ was approximately 100 MPa after $10^6$ cycles.

Review of Formability and Forming Property for Stainless Steel (스테인레스 강판의 가공특성과 성형성에 관한 고찰)

  • Kim, Y.S.;Park, J.G.;Ahn, D.C.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.193-205
    • /
    • 2011
  • Because of its rustproof property, stainless steel is widely used in kitchen appliances, building materials, electronics, chemical plants and automobile exhausts. In addition, the utilization of stainless steel for fuel cell application is growing. As the demand for this material increases, it is necessary to study the basic properties of stainless steel such as corrosion resistance, heat transfer, formability, cutting or shearing ability and weldability. In this article, the mechanical properties, formability and press forming performance of stainless steel are reviewed. Since temperature and strain rate affect the press forming performance of STS304(austenitic) stainless steel, the influence of these parameters on the plastic behavior should be investigated. Moreover, measures for the prevention of ridging of STS430(ferritic) and delayed fracture of STS430, which respectively appear during and after press forming, should be considered. Recently, stainless steel sheets with a thickness lower than 0.2 mm have been widely used in applications for mobile phone, digital camera and fuel cell separator. Therefore, there is a growing interest of studying the grain size effect and plasticity at the crystal scale in order to understand the anisotropic behavior and micro forming ability of thin sheets. This review paper was written with the objective of helping engineers and researchers to understand the forming characteristics of stainless steel and to establish standards in plastic forming techniques.

The Study of Manufacturing Technology for a Sill Side by Roll Forming (다단 성형 기술을 이용한 차체 부품 개발)

  • Kim, D.K.;Han, S.W.;Jeon, H.J.;Cheon, S.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.376-379
    • /
    • 2014
  • During roll forming a sheet metal is continuously and progressively formed into a product of the required cross-section and longitudinal shape. An example product is a circular tube with a required diameter, wall-thickness and straightness. Roll forming occurs by passing the sheet through a series of forming rolls that are arranged in tandem. Each pair of forming rolls in the roll forming line plays a particular role in obtaining the required cross-section and longitudinal shape in the product. In recent years, that process is often applied to car body parts by automotive industries. In the current study, an optimal model design and proper roll-pass sequences as well as the number of forming rolls and bending angles were used to produce a sill side. The effects of the process parameters on the final shape formed by roll forming defects were evaluated.

A Study on the Process Sequence Design of a Tub for the Washing Machine Container (세탁조의 제작공정해석 및 공정개선에 관한 연구)

  • 임중연;이호용;황병복
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.359-374
    • /
    • 1994
  • Process sequence design in sheet metal forming process by the finite element method is investigated. The forming of sheet metal into a washing machine container is used to demonstrate the design of an improved process sequence which has fewer operations. The design procedure makes extensive use of the finite element method which has simulation capabilities of elastic-plastic modeling. A one-stage process to make an initial blank to the final product is simulated to obtain information on metal flow requirements. Loading simulation for a conventional method is also performed to evaluate the design criteria which are uniform thickness distribution around the finished part and maximum punch load within limit of available press capacity. The newly designed sequence has two forming operations and can achieve net-shape manufacturing, while the conventional process sequence has three forming operations. This specific case conventional process sequence has three forming operations. This specific case can be considered for application of the method and for development of the sequence design methodology in general.

  • PDF