• Title/Summary/Keyword: Forming Energy

Search Result 722, Processing Time 0.03 seconds

Development of Sheet Metal Forming Apparatus Using Electromagnetic Lorentz Force (전자기 로렌쯔력을 이용한 박판성형 장비 개발)

  • Lee, H.M.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.38-43
    • /
    • 2010
  • Electromagnetic forming (EMF) method is one of high-velocity forming processes, which uses electromagnetic Lorentz force. Advantages of this forming technique are summarized as improvement of formability, reduction in wrinkling, non-contact forming and applications of various forming process. In this study, the EMF apparatus is developed. It is designed to be stored in 10 capacitors connected in parallel, each with a capacitance of $50{\mu}F$ and maximum working voltage of 5kV. The system has capacitance of $500{\mu}F$ and maximum stored energy of 6.25kJ. And EMF experiments are carried out to verify the feasibility of the EMF apparatus, which has enough forming force from the results of EMF experiment. In addition, peak current carrying a forming coil is predicted from theoretical background, and verified the predicted value compared with experimental value using the current measurement equipment. Consequently, EMF apparatus developed in this study can be applied to various EMF researches for commercialization.

Forming Analysis of the Front Side Member using Equivalent Draw-bead for Crashworthness Assessment (등가 드로오비드를 적용한 Front Side Member의 성형해석 및 충돌평가)

  • Song, J.H.;Kim, K.P.;Kim, S.H.;Huh, H.;Kim, H.S.;Hong, S.G.
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.320-327
    • /
    • 2003
  • This paper is concerned with forming analysis of Front Side Members and effects of the forming analysis on crash analysis of an auto-body. For efficient forming analysis, equivalent draw-bead restraining forces are calculated with ABAQUS/Standard and then used as the boundary condition in forming simulation. In order to demonstrate the validity of the forming analysis, the thickness variation in the numerical simulation result is compared quantitatively with the one in the real product. Forming histories obtained kom the forming analysis are utilized as the initial condition of the crash analysis for accurate assessment of the crashworthiness. Crashworthiness such as the load-carrying capacity, crash mode and the energy absorption is evaluated and investigated for the identification of forming effects.

Characteristics of Forming toad in Forward and Backward Can Extrusion Processes (전ㆍ후방 캔 압출공정의 성형하중특성)

  • Choi H. J;Ham B. S;Ok J. H;Shim J. H;Kim S. H;Hwang B. B
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.689-695
    • /
    • 2004
  • This paper is concerned with the analysis of the forming load characteristics of a forward-backward can extrusion process. The analysis in this paper is extended to the selection of press frame capacity for producing efficiently final product at low cost. The possible extrusion processes to shape a forward-backward can part with different outer diameters are categorized to investigate quantitatively the forming load, forming energy and maximum pressure exerted on the die-material interface. The categorized processes are composed of combined and/or some basic extrusion processes. After the analysis of the forming load characteristics, the frame capacity of press suitable for a selected process could be determined along with securing the load capacity and with considering productivity. In addition, it is also suggested that different load capacities be selected for different dimensions of a part such as the wall thickness in forward direction. The work in this paper could be a good reference for analysis of complex extrusion and selection of proper frame capacity of press to achieve low production cost and thus high productivity.

Crashworthiness of an Auto-body Member with the Forming Effect (성형 효과를 고려한 차체 구조 부재의 충돌 특성)

  • Kim, Kee-Poong;Song, Jung-Han;Huh, Hoon;Kim, Hyun-Sup;Hong, Seok-Gil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.91-98
    • /
    • 2004
  • This paper is concerned with crash analysis for an auto-body member with the forming effect. Auto-body members such as a front frame assembly are fabricated with sheet metal forming processes that induce forming histories such as the plastic work hardening and non-uniform thickness distribution. Numerical simulation is carried out with LS-DYNA3D in order to identify the forming effect on the crashworthiness. The crash analysis of the front frame assembly with the forming effect leads to a different result from that without the forming effect. Crashworthiness such as the load-carrying capacity, the crash mode and the energy absorption are calculated to investigate and identify the forming effect. It is fully demonstrated that the design of auto-body members needs to consider the forming effect for accurate assessment of the load-carrying capacity and the deformation mechanism of the formed members.

A Study on the Design of Branch Conductor in the Magnetic Pulse Generator (자기 펄스 발생기의 연결 도체 설계에 관한 연구)

  • SUH, JUBA
    • Journal of Industrial Technology
    • /
    • v.9
    • /
    • pp.101-107
    • /
    • 1989
  • The magnetic forming system must be able to store very important electric energy, several tens kilojoules, and flow this energy through the forming coil within some hundreds microseconds. So several hundreds kiloamperes of current can flow through the branch conductor. For the good performance of this type of machine, internal impedance must be minimized. By the computation of distribution of current inside the conductors using integral equation method, we can obtain the inductance and resistance of some dispositions of branch conductors and by comparison obtain some principles for the design of branch conductors in the high power magnetic pulse generator.

  • PDF

Material Test and Forming Analysis of Urethane Rubber (우레탄 고무에 대한 물성평가 및 성형해석)

  • Woo, Chang-Su;Park, Hyun-Sung;Lee, Geun-An
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.279-284
    • /
    • 2007
  • Elasto-forming has been dedicated to specific and limited production. Today, using enhanced pad materials, it has become an efficient and economical process alternative for low and medium volume metal-forming production. The non-linear properties of elastomer which are described as strain energy function are important parameter to design and evaluate of elastomer component. These are determined by material tests which are uni-axial tension and bi-axial tension. In order to investigate the design paramerer, Finite element analysis was carried out for elasto-forming process.

  • PDF

Inverse Finite Element Analysis of Autobody Structures with a Direct Mesh Mapping Method for Crash Analysis Considering Forming Effets (직접격자 사상법을 이용한 차체 구조물의 유한요소 역해석 및 성형효과를 고려한 충돌해석)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.457-464
    • /
    • 2002
  • A finite element inverse analysis is utilized to consider forming effects of an S-rail on the assessment of the crashworthiness with small amount of computation time. A crash analysis can be directly performed after the inverse simulation of a forming process without a smoothing or remeshing scheme. The direct mesh mapping method is used to calculate an initial guess from a sliding constraint surface that is extracted from the die and punch set. Analysis results demonstrate that energy absorption of structures is increased when simulation considers forming effects of thickness variation and work hardening. The finite element inverse analysis is proved to be an effective tool in consideration of forming effects for the crash analysis.

Effect of Process Parameters in Electromagnetic Forming Apparatus on Forming Load by FEM (유한요소해석을 통한 전자기 성형장비 공정변수의 성형력에 미치는 영향)

  • Noh, Hak Gon;Park, Hyeong Gyu;Song, Woo Jin;Kang, Beom Soo;Kim, Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.733-740
    • /
    • 2013
  • The high-velocity electromagnetic forming (EMF) process is based on the Lorentz force and the energy of the magnetic field. The advantages of EMF include improved formability, wrinkle reduction, and non-contact forming. In this study, numerical simulations were conducted to determine the practical parameters for the EMF process. A 2-D axis-symmetric electromagnetic model was used, based on a spiral-type forming coil. In the numerical simulation, an RLC circuit was coupled to the spiral coil to measure various design parameters, such as the system input current and the electromagnetic force. The simulation results show that even though the input peak current levels were at the same level in each case, the forming condition varied due to differences in the frequency of the input current. Thus, the electromagnetic forming force was affected by the input current frequency, which in turn, determined the magnitude of the current density and the magnetic flux density.

A Finite Element Analysis for Near-net-shape Forming of Al6061 Powder under Warm Pressing (온간 성형 하에서 Al 합금 분말의 정밀정형에 대한 유한요소해석)

  • Kim, Ki-Tae;Yang, Hoon-Chul;Kim, Jong-Kwang
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.507-512
    • /
    • 2003
  • A finite element analysis for near-net-shape forming of Al6061 powder was performed under warm pressing. The advantages of warm compaction by rubber isostatic pressing were discussed to obtain parts with better density distributions. To simulate densification and deformed shape of a powder compact during warm pressing, the elastoplastic constitutive equation based on yield function of Shima-Oyane was implemented into a finite element program(ABAQUS). The hyperelastic constitutive equation based on the Ogden strain energy potential was employed to analyze nonlinear elastic response of rubber. Finite element results were compared with experimental data for Al6061 powder compacts under warm pressing.

  • PDF

Bending Characteristics of DP980 Steel Sheets by the Laser Irradiation (DP980강판의 레이저 조사에 따른 굽힘 변형특성 연구)

  • Song, J.H.;Zhang, Y.;Lee, J.S.;Park, S.J.;Choi, D.S.;Lee, G.A.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.378-383
    • /
    • 2012
  • Laser forming is an advanced process in sheet metal forming in which a laser heat source is used to shape the metal sheet. This is a new manufacturing technique that forms the metal sheet only by a thermal stress. Analyses of the temperature and stress fields are very important to identify the deformation mechanism in laser forming. In this paper, temperature distributions and deformation behaviors of DP980 steel sheets are investigated numerically and experimentally. FE simulations are first conducted to evaluate the response of a square sheet in bending. The effects of process parameters such as laser power and scanning speed are then analyzed numerically and experimentally. It is observed that experimental and numerical results are in good agreement. These results provide a relationship between the line energy and the angles for laser bending of DP980 steel sheets.