• Title/Summary/Keyword: Formed ceramic materials

Search Result 438, Processing Time 0.03 seconds

Effect of Fluxes on the Wear of MgO Coating Materials for Tundish (턴디쉬용 MgO Coating 재의 손상에 미치는 Flux의 영향)

  • 홍기곤;박재원;김효준
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.677-684
    • /
    • 1997
  • The effects of fluxes on MgO coating materials for tundish were investigated. As the number of charge in continuous casting was increased, the basicity of tundish slag was decreased due to the increase of silica formed by dissolution from rice hull. As a result, the wear of magnesia lining was increased. In aggregates of MgO coating materials, magnesioferrite was formed by the reaction between magnesia and ferric oxide formed by the oxidation of molten steel, while matrix parts of MgO coating materials were worn by CaO-Al2O3-SiO2 compounds. Silica in rice hull extracted to the molten slag reduced basicity of slag and formed forsterite in the result of its reaction with magnesia lining. Also, fayalite was formed from the reaction between silica and ferric oxide and it caused the increment of magnesia lining's wear. The wear of magnesia lining by flux of CaO-SiO2 was larger than that of Cao-Al2O3 and calcia in the flux increased the wear of magnesia lining through the formation of rankinite.

  • PDF

Characteristics of Carbon Tetrafluoride Plasma Resistance of Various Glasses

  • Choi, Jae Ho;Han, Yoon Soo;Lee, Sung Min;Park, Hyung Bin;Choi, Sung Churl;Kim, Hyeong Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.700-706
    • /
    • 2016
  • Etch rate, surface roughness and microstructure as plasma resistance were evaluated for six kinds of oxide glass with different compositions. Borosilicate glass (BS) was found to be etched at the highest etch rate and zinc aluminum phosphate glass (ZAP) showed a relatively lower etch rate than borosilicate. On the other hand, the etching rate of calcium aluminosilicate glass (CAS) was measured to be similar to that of sintered alumina while yttrium aluminosilicate glass (YAS) showed the lowest etch rate. Such different etch rates by mixture plasma as a function of glass compositions was dependent on whether or not fluoride compounds were formed on glass and sublimated in high vacuum. Especially, in view that $CaF_2$ and $YF_3$ with high sublimation points were formed on the surface of CAS and YAS glasses, both CAS and YAS glasses were considered to be a good candidate for protective coating materials on the damaged polycrystalline ceramics parts in semi-conductor and display processes.

Solid State Sintering of Calcium Phosphate Ceramic Composites and Their Cellular Response

  • Cho, Yeong-Cheol;Kong, Young-Min;Riu, Doh-Hyung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.691-695
    • /
    • 2012
  • Calcium phosphate ceramic composites, consisting of hydroxyapatite(HA) and tricalcium phosphate (TCP), were fabricated by solid state sintering in order to investigate the effect of their initial compositions on microstructural evolutions and biocompatibility. All the sintered calcium phosphate ceramics exhibited almost full densification, while the grain growth of the composites increased with an increasing TCP content in the green body. The TCP phase transformed into a Ca-deficient HA phase during sintering via the diffusion of calcium ions from the HA phase into the TCP phase. The phases formed in the composites significantly affected the biocompatibility of the composites. The HA-matrix ceramic composites with TCP had a better cellular response than the pure HA ceramics, presumably due to the newly formed Ca-deficient HA.

Effect of Boron Carbide on the Morphology of SiC Conversion Layer of Graphite Substrate formed by Chemical Vapor Reaction (화학기상반응으로 흑연 위에 만든 SiC 반응층의 모양에 미치는 보론 카바이드의 영향)

  • Hong, Hyun-Jung;Riu, Doh-Hyung;Cho, Kwang-Youn;Kong, Eun-Bae;Shin, Dong-Geun;Shin, Dae-Kyu;Lee, Jae-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.445-450
    • /
    • 2007
  • A conversion layer of SiC was fabricated on the graphite substrate by a chemical vapor reaction method in order to enhance the oxidation resistance of graphite. The effect of boron carbide containing powder bed on the morphology of SiC conversion layer was investigated during the chemical vapor reaction of graphite with the reactive silicon-source at $1650^{\circ}C\;and\;1700^{\circ}C$ for 1 h. The presence of boron species enhanced the conversion of graphite into SiC, and altered the morphology of the conversion layer significantly as well. A continuous and thick SiC conversion layer was formed only when the boron source was used with the other silicon compounds. The boron is deemed to increase the diffusion of SiOx in SiC/C system.

Additive Manufacturing of Various Ceramic Composition Using Inkjet Printing Process (잉크젯 프린팅을 이용한 연속 조성 세라믹 화합물 구조체 형성)

  • Park, Jae-Hyeon;Choi, Jung-Hoon;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.627-635
    • /
    • 2020
  • 3D printing technology is a processing technology in which 3D structures are formed by fabricating multiple 2D layers of materials based on 3D designed digital data and stacking them layer by layer. Although layers are stacked using inkjet printing to release various materials, it is still rare for research to successfully form a product as an additive manufacture of multi-materials. In this study, dispersion conditions are optimized by adding a dispersant to an acrylic monomer suitable for inkjet printing using Co3O4 and Al2O3. 3D structures having continuous composition composed of a different ceramic material are manufactured by printing using two UV curable ceramic inks whose optimization is advanced. After the heat treatment, the produced structure is checked for the formation and color of the desired crystals by comparing the crystalline analysis according to the characteristics of each part of the structure with ceramic pigments made by solid phase synthesis method.

Ceramic Diesel Particulate Filter Structure with Inclined Gas Paths

  • Hwang, Yeon;Kang, Dae-Sik;Choi, Hyoung-Gwon;Lee, Choong-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.3
    • /
    • pp.226-230
    • /
    • 2012
  • This paper presents a novel structure for a diesel particulate filter (DPF) with inclined gas paths, which was designed so that the gas paths offered a fluent flow of exhaust gases, and particulate matter (PM) was collected at pores formed in the body. The alumina porous filter was prepared by a conventional sintering process at $1200^{\circ}C$ for 2 h. Straight gas paths with $30^{\circ}$ of inclination from the gas flow direction were formed in the filter body. It is shown that this filter structure worked as a PM filter, in which 90.2% of soot filtration efficiency and 59.6 mbar of pressure drop were achieved.

The Synthesis of High-purity Zirconia Powders and Its Properties (Compaction and Sintering Behaviro as a Function of Granulation Methods) (고순도 지르코니아 분말의 합성 및 그 특성 (조립방법에 따른 성형 및 소결 특성))

  • Kim, Hwan;Lee, Jong-Kook;Kim, Ju-Young;Hwang, Kyu-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.357-363
    • /
    • 1988
  • Ccompaction and sintering behavior of highly pure PSZ powders were investigated by laying the stress on the granulation processes. The particle size of coprecipitated PSZ powder was so fine that the agglomeration was severely formed during drying and calcing step and by this agglomeration differential sinering was occurred. The methanol dispersion of precipitates was the good method of avoiding severe agglomeration formed during drying process because of small surface tension than water. But perfect deagglomeraton was not possible due to high surface area of powders. So homogenization by granulation was needed, and among the method spray granulation was the most desirable to obtain homogeneous compacts and subsequent flaw-free ceramics.

  • PDF

Preperation of Silicon Carbide Oxidation Protection Film on Carbon Thermal Insulator Using Polycarbosilane and Its Characterization (폴리카보실란을 이용하여 탄소단열재에 코팅한 실리콘카바이드 코팅막의 내산화 특성)

  • Ahn, Su-Bin;Lee, Yoonjoo;Bang, Jung-Won;Shin, Dong-Geun;Kwon, Woo-Teck
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.471-476
    • /
    • 2017
  • In order to improve the high temperature oxidation resistance and lifespan of mat type porous carbon insulation, SiC was coated on carbon insulation by solution coating using polycarbosilane solution, curing in an oxidizing atmosphere at $200^{\circ}C$, and pyrolysis at temperatures up to $1200^{\circ}C$. The SiOC phase formed during the pyrolysis process was converted into SiC crystals as the heat treatment temperature increased, and a SiC coating with a thickness of 10-15 nm was formed at $1600^{\circ}C$. The SiC coated specimen showed a weight reduction of 8.6 % when it was kept in an atmospheric environment of $700^{\circ}C$ for 1 hour. On the other hand, the thermal conductivity was 0.17 W/mK, and no difference between states before and after coating was observed at all.

Preparation of Formed Ceramic materials by Recycling of Aluminium Dross (알루미늄 드로스를 이용한 무기 발포재 제조)

  • 박제신;박형규;장대규
    • Resources Recycling
    • /
    • v.10 no.4
    • /
    • pp.42-47
    • /
    • 2001
  • Recycling of aluminum dross is a significant issue in domestic aluminum industry. In this study, formed ceramic materials were prepared using aluminum dross mixed with feldspar powders to investigate its application as industrial materials and utilization of aluminum dross. In the prepared sample, feldspar was melted at the sintered temperature, and its phase was trans-formed into amorphous, and spinel ($MgA1_2$$O_4$) phase in the dross was remained clearly. Density of the test specimen Increased from 0.91 to 0.65 gr/㎤ and water absorbance decreased from 2.5 to 1.7f% with increasing of sintered time at the sintered temperature $1220^{\circ}C$ with composition of feldspar 55 wt%, dross 40wt% and bentonite 5 wt%. At the same experimental conditions, bending strength of the test specimen was 10.8 MPa, and heat conductivity was 0.34 W/m.K with sintered time 30 minutes.

  • PDF