• Title/Summary/Keyword: Formation free energy

Search Result 233, Processing Time 0.026 seconds

Active Metal Brazing Applied to Joining of ZrO2-Ti Alloy (ZrO2-Ti합금의 활성금속 브레이징)

  • Kee, Se-Ho;Park, Sang-Yoon;Jung, Jae-Pil;Kim, Won-Joong
    • Journal of Welding and Joining
    • /
    • v.30 no.3
    • /
    • pp.38-43
    • /
    • 2012
  • In this study, active metal brazing methods for $ZrO_2$ and Ti alloy were discussed. To get a successful metal-ceramic bonding, various factors (melting temperature, corrosion, sag resistance, thermal expansion coefficient etc. of base materilas and filler metal) should be considered. Moreover, in order to clarify bonding between the metal and ceramic, the mechanism of the interfacial structure of the joints should be identified. The driving force for the formation of metal and ceramic interfaces is the reduction of the free energy which occurs when their contact becomes complete. Interfacial bonding depends on the material combinations and the bonding processes. This study describes the bonding between ceramic and metal in an active metal brazing.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Protective Effects of a Herb, Artemisia capillaris, Against Radiation-induced DNA Damage (방사선 유도 DNA 손상에 대한 인진쑥의 방어효과)

  • Jo, Sung-Kee;Oh, Heon;Cheon, Eui-Hyun;Jeong, U-Hee;Cho, Nam-Jeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • In the present study, the protective effects of Artemisia capillaris (AC) on the DNA damage induced by $^{60}$ Co ${\gamma}$-rays were evaluated using alkaline single-cell gel electrophoresis (SCGE, comet assay) in the mouse peripheral lymphocytes and micronuclei (MN) formation test in the Chinese hamster ovary (CHO) cells. We also investigated the effect of AC on 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in the mouse liver and thymus exposed to ${\gamma}$-ray, The tail moment and the frequency of MN, which were markers of DNA damage in the SCGE and MN formation test, were decreased in the groups treated with AC extract before exposure to 200 cGy of ${\gamma}$-ray. We also observed its activities, lowering 8-OHdG level, an index of oxidative DNA damage, in the groups treated with AC extract before whole body ${\gamma}$-irradiation (800 cGy). It is plausible that scavenging of free radicals by AC may have played an important role in providing the protection against the radiation-induced damage to the DNA. These results indicated that AC protects the DNA damage induced by ${\gamma}$-rays and might be a useful radioprotector, especially since it is a relatively nontoxic product.

Nucleation and Growth of Bi-free and Superconducting Phases in Bi2Sr2Ca2.2CuO3Ox (Bi2Sr2Ca2.2CuO3Ox계에서 초전도상과 Bi-free상의 핵생성과 성장)

  • 오용택;신동찬;구재본;이인환;한상철;성태현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.343-350
    • /
    • 2003
  • Using Bi$_2$Sr$_2$Ca$_2$.$_2$Cu$_3$ $O_{x}$ powders prepared by solid state reaction and spray drying method, the nucleation and growth behaviors of superconducting and second phases were investigated during isothermal heat treatment. When the spray drying power was used in contrast with solid state reaction powder, Bi$_2$Sr$_2$Ca$_2$.$_2$Cu$_3$ $O_{x}$ (2223) phase could be formed at the relatively shot time and second phases were much bigger. Quantitative analysis showed that as the heat treatment time increased, more Bi$_2$Sr$_2$Ca$_2$.$_2$Cu$_3$ $O_{x}$ (2212) changed to 2223 and the major second phase was changed from (Sr,Ca)$_{14}$Cu$_{24}$ $O_{x}$(14:24) to (Sr,Ca)$_2$Cu$_1$ $O_{x}$ (2:l). The superconducting phase formed at the relatively short time 14:24 phase. Following the Bi-free phase of 14:24 Phase, but long time was needed in places far from the 14:24 phase. Following the formation of the 2212 phase near the 14:24 phase, the 2223 phase nucleated preferentially at the interface between the 2212 and 14:24 phases. The preferential nuclcation of 2223 was explained by its structural similarity and low Interfacial energy with both the Bi-free and 2212 Phases.12 Phases.

Flexible Dye-sensitized Solar Cell Using Titanium Gel at Low Temperature (저온 티타늄 겔을 이용한 플렉시블 염료감응형 태양전지)

  • Ji, Seung Hwan;Park, Hyunsu;Kim, Doyeon;Han, Do Hyung;Yun, Hye Won;Kim, Woo-Byoung
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.183-188
    • /
    • 2019
  • Flexible dye-sensitized solar cells using binder free $TiO_2$ paste for low temperature sintering are developed. In this paste a small amount of titanium gel is added to a paste of $TiO_2$ nanoparticle. Analysis of titanium gel paste prepared at $150^{\circ}C$ shows that it has a pure anatase phase in XRD and mesoporous structure in SEM. The formation of the titanium gel 1-2 nm coated layer is confirmed by comparing the TEM image analysis of the titanium gel paste and the pristine paste. This coating layer improves the excited electron transfer and electrical contact between particles. The J-V curves of the organic binder DSSCs fabricated at $150^{\circ}C$ shows a current density of $0.12mA/cm^2$ and an open-circuit voltage of 0.47 V, while the titanium gel DSSCs improves electrical characteristics to $5.04mA/cm^2$ and 0.74 V. As a result, the photoelectric conversion efficiency of the organic binder DSSC prepared at low temperature is as low as 0.02 %, but the titanium gel paste DSSCs has a measured effciency of 2.76 %.

Energy band gap of $Zn_{0.86}Mn_{0.14}Te$ epilayer grown on GaAs(100) substrates (GaAs(100)기판 위에 성장된 $Zn_{0.86}Mn_{0.14}Te$에피막의 띠 간격 에너지)

  • 최용대;안갑수;이광재;김성구;심석주;윤희중;유영문;김대중;정양준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.3
    • /
    • pp.122-126
    • /
    • 2003
  • In this study, $Zn_{0.86}Mn_{0.14}$Te epilayer of 0.7 $\mu\textrm{m}$-thickness was grown on GaAs(100) substrate by using hot wallepitaxy. GaAs(100) substrate was removed from $Zn_{0.86}Mn_{0.14}$Teepilayer by the selective etching solution. The crystal structure and the lattice constant of only Z $n_{0.86}$ M $n_{0.14}$Te epilayer were investigated to be zincblende and 6.140 $\AA$ from X-ray diffraction pattern, respectively. Mn composition x of $Zn_{1-x}Mn_x$Te epilayer was found to be 0.14 using this lattice constant and Vegard's law. The crystal quality of the epilayer was confirmed to be very good due to 256 arcsec-full-width at half-maximum of the double crystal rocking curve. The absorption spectra from the transmission ones were obtained to measure the band gap energy of $Zn_{0.86}Mn_{0.14}$Te epilayer from 300 K to 10 K. With the decreasing temperature,. strong absorption regions in the absorption spectra were shifted to higher energy side and the absorption peak meaning the free exciton formation appeared near the absorption edge. The band gap energy values of $Zn_{0.86}Mn_{0.14}$Te epilayer at 0 K and 300 K were found to be almost 2.4947 eV and 2.330 eV from the temperature dependence of the free exciton peak position energy of $Zn_{0.86}Mn_{0.14}$Te epilayer, respectively. The free exciton peak position energy of $Zn_{0.86}Mn_{0.14}$Te epilayer without GaAs substrate was larger 15.4 meV than photoluminescence peak position energy at 10 K. This energy difference between two peaks was analysed to be Stokes shift.

A Study on the Machinabilty of Tianium (티타늄의 절삭성에 관한 연구)

  • Hong, Hwan-Pyo;Oh, Seok-Hyung;Seo, Nam-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.1
    • /
    • pp.45-51
    • /
    • 1989
  • In metal cutting various types of chips are produced in consequence of cutting conditions. According to the type of chips the cutting mechanism is to be changed. Most of the cutting theory is based on the continuous chip because of its convenient analysis, but the occurrence of the saw-toothed chip depends upon the workpiece and/or the cutting conditions, one of which is titanium alloy used widely. Nowadays titanium alloys are used widely with the rapid development of aerospace structural engineering application, whereas the theory of cutting mechanism has not been established yet, and the formatting process has not been understood satisfactorily, either. Unfortunately several misconceptions, conflicting statements and statements needing further clarifi- cation are also found. In this paper an attempt is made to clarify the formation process of saw-toothed chips which are to be produced during the orthogonal cutting process of titanium alloys. They were machined at low speed to avoid the rapid tool wear. We observed the SEM-photographs of chips taken at the quick-st- opping device. It is hoped that a rational model of the mechanics of cyclic chip formation can be developed. The results obtained are as follows. 1. When a saw- toothed chip is formed, the shear band begins at the primary shear zone and trans- fers to the free surface, so that a segment is produced and it is completed by upsetting between the formatting segment and the formatted segment. 2. As the rake angle or the clearance angle increases in the machining of the titanium alloy, the chip approaches to that of the continous type. 3. When the rake angle and the clearance angle are increased the shear energy and the unit friction energy decrease, which shows the same aspect as that of the continuous chip.

  • PDF

Measurement of Formation Free Energy of $BaCuO_2$ by EMF Method (EMF 방법에 의한 $BaCuO_2$의 생성자유에너지 측정)

  • Kim, Su-Gwon
    • Korean Journal of Materials Research
    • /
    • v.6 no.2
    • /
    • pp.228-234
    • /
    • 1996
  • BzCuO2 의 생성 자유에너지를 이중 이온교환된 Ba2+-$\beta$/$\beta$"-AI2O3를 전해질로 사용하여 다음과 같은 생성셀로부터 측정하였다. Au(po2=10-3)/Au+BaCuO2+CuO// Ba2+-$\beta$/$\beta$"-Au이 갈바닉셀에서 BzCuO2 의 임의의 생성식과 생성자유에너지는 다음과 같다. BaO+CuO=BaCuO2 $\Delta$fGo/kJ.mol-1=-77.3-3.3x10-3T/K.3x10-3T/K.

  • PDF

Electrical properties of (Na0.5Bi0.5)(Zr0.75Ti0.25)O3 ceramic

  • Lily, Lily;Yadav, K.L.;Prasad, K.
    • Advances in materials Research
    • /
    • v.2 no.1
    • /
    • pp.1-13
    • /
    • 2013
  • Lead-free compound $(Na_{0.5}Bi_{0.5})(Zr_{0.75}Ti_{0.25})O_3$ was prepared using conventional ceramic technique at $1070^{\circ}C$/4h in air atmosphere. X-ray diffraction analysis showed the formation of single-phase orthorhombic structure. Permittivity data showed low temperature coefficient of capacitance ($T_{CC}{\approx}5%$) up to $100^{\circ}C$. Complex impedance studies indicated the presence of grain boundary effect, non-Debye type dielectric relaxation and evidences of a negative temperature coefficient of resistance. The ac conductivity data were used to evaluate the density of states at Fermi level and apparent activation energy of the compound.

Kinetics and Mechanism of the Anilinolysis of Aryl Ethyl Isothiocyanophosphates in Acetonitrile

  • Barai, Hasi Rani;Adhikary, Keshab Kumar;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1829-1834
    • /
    • 2013
  • The nucleophilic substitution reactions of Y-aryl ethyl isothiocyanophosphates with substituted X-anilines and deuterated X-anilines were investigated kinetically in acetonitrile at $75.0^{\circ}C$. The free energy relationships with X in the nucleophiles exhibited biphasic concave downwards with a break point at X = H. A stepwise mechanism with rate-limiting bond formation for strongly basic anilines and with rate-limiting bond breaking for weakly basic anilines is proposed based on the negative and positive ${\rho}_{XY}$ values, respectively. The deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) changed gradually from primary normal with strongly basic anilines, via primary normal and secondary inverse with aniline, to secondary inverse with weakly basic anilines. The primary normal and secondary inverse DKIEs were rationalized by frontside attack involving hydrogen bonded, four-center-type TSf and backside attack involving in-line-type TSb, respectively.