Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.3.183

Flexible Dye-sensitized Solar Cell Using Titanium Gel at Low Temperature  

Ji, Seung Hwan (Department of Energy Engineering, Dankook University)
Park, Hyunsu (Department of Energy Engineering, Dankook University)
Kim, Doyeon (Department of Energy Engineering, Dankook University)
Han, Do Hyung (Department of Energy Engineering, Dankook University)
Yun, Hye Won (Department of Energy Engineering, Dankook University)
Kim, Woo-Byoung (Department of Energy Engineering, Dankook University)
Publication Information
Korean Journal of Materials Research / v.29, no.3, 2019 , pp. 183-188 More about this Journal
Abstract
Flexible dye-sensitized solar cells using binder free $TiO_2$ paste for low temperature sintering are developed. In this paste a small amount of titanium gel is added to a paste of $TiO_2$ nanoparticle. Analysis of titanium gel paste prepared at $150^{\circ}C$ shows that it has a pure anatase phase in XRD and mesoporous structure in SEM. The formation of the titanium gel 1-2 nm coated layer is confirmed by comparing the TEM image analysis of the titanium gel paste and the pristine paste. This coating layer improves the excited electron transfer and electrical contact between particles. The J-V curves of the organic binder DSSCs fabricated at $150^{\circ}C$ shows a current density of $0.12mA/cm^2$ and an open-circuit voltage of 0.47 V, while the titanium gel DSSCs improves electrical characteristics to $5.04mA/cm^2$ and 0.74 V. As a result, the photoelectric conversion efficiency of the organic binder DSSC prepared at low temperature is as low as 0.02 %, but the titanium gel paste DSSCs has a measured effciency of 2.76 %.
Keywords
dye-sensitized solar cells; $TiO_2$; titanium gel; flexible DSSCs;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Gong, J. Liang and K. Sumathy, Renewable and Sustainable Energy Rev., 16, 5848 (2012).   DOI
2 H. L. An, H.-R. Kang, H. J. Sun, J. H. Han and H.-J. Ahn, Korean J. Mater. Res., 25, 672 (2015).   DOI
3 B. O'regan and M. Gratzel, Nature, 353, 737 (1991).   DOI
4 J.-W. Bae, B.-R. Koo, T.-K. Lee and H.-J. An, J. Korean Powder Metall. Inst., 25, 1 (2018).   DOI
5 K. Fan, R. Li, J. Chen, W. Shi and T. Peng, Sci. Adv. Mater., 5, 1596 (2013).   DOI
6 L. Y. Lin, C. P. Lee, K. W. Tsai, M. H. Yeh, C. Y. Chen, R. Vittal, C. G. Wu and K. C. Ho, Prog. Photovoltaics: Res. Appl., 20, 181 (2012).   DOI
7 M. G. Kang, N.-G. Park, K. S. Ryu, S. H. Chang and K.-J. Kim, Sol. Energy Mater. Sol. Cells, 90, 574 (2006).   DOI
8 T. Miyasaka and Y. Kijitori, J. Electrochem. Soc., 151, A1767 (2004).   DOI
9 F. Pichot, J. R. Pitts and B. A. Gregg, Langmuir, 16, 5626 (2000).   DOI
10 C. Longo, J. Freitas and M.-A. De Paoli, J. Photochem. Photobiol., A, 159, 33 (2003).   DOI
11 T. Kado, Y. Kubota and S. Hayase, Chem. Lett., 34, 1006 (2005).   DOI
12 S. A. Haque, E. Palomares, H. M. Upadhyaya, L. Otley, R. J. Potter, A. B. Holmes and J. R. Durrant, Chem. Commun., 24, 3008 (2003).
13 T. Kado, M. Yamaguchi, Y. Yamada and S. Hayase, Chem. Lett., 32, 1056 (2003).   DOI
14 L.-Y. Lin, C.-P. Lee, R. Vittal and K.-C. Ho, J. Power Sources, 195, 4344 (2010).   DOI
15 D. Zhang, T. Yoshida, T. Oekermann, K. Furuta and H. Minoura, Adv. Funct. Mater., 16, 1228 (2006).   DOI
16 X. Li, H. Lin, J. Li, N. Wang, C. Lin and L. Zhang, Photochem. Photobiol., A, 195, 247 (2008).   DOI
17 D. Zhang, T. Yoshida and H. Minoura, Chem. Lett., 31, 874 (2002).   DOI
18 M. Iwasaki, C.-W. Lee, T.-H. Kim and W.-K. Park, J. Ceram. Soc. Jpn., 116, 153 (2008).   DOI
19 S. Uchida, M. Tomiha, H. Takizawa and M. Kawaraya, Photochem. Photobiol., A, 164, 93 (2004).   DOI
20 M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda and G. Nelles, Nat. Mater., 4, 607 (2005).   DOI
21 J. Livage, M. Henry and C. Sanchez, Prog. Solid State Chem., 18, 259 (1988).   DOI
22 H. Park, J. Choi, J.-P. Choi and W.-B. Kim, Photochem. Photobiol., A, 351, 139 (2018).   DOI
23 N.-G. Park, J. Van de Lagemaat and A.J. Frank, J. Phys. Chem. B, 104, 8989 (2000).   DOI