• Title/Summary/Keyword: Formation and growth mechanisms

Search Result 175, Processing Time 0.022 seconds

Transcriptome analysis revealed regulatory mechanisms of light and culture density on free-living sporangial filaments of Neopyropia yezoensis (Rhodophyta)

  • Bangxiang He;Zhenbin Zheng;Jianfeng Niu;Xiujun Xie;Guangce Wang
    • ALGAE
    • /
    • v.38 no.4
    • /
    • pp.283-294
    • /
    • 2023
  • Previous research indicated that free-living sporangial filament keep hollow morph under high-culture density and form bipartite cells under low-culture density, while the following conchospore release was inhibited by high light. Here, we further explored the molecular bases of these affects caused by light and culture density using a transcriptome analysis. Many differentially expressed genes (DEGs) related to carbon dioxide concentration and fixation, photosynthesis, chlorophyll synthesis and nitrogen absorption were upregulated under high-light conditions compared with low-light conditions, indicating the molecular basis of rapid vegetative growth under the former. The stress response- and ion transport-related DEGs, as well as the gene encoding the vacuole formation-brefeldin A-inhibited guanine nucleotide exchange protein (BIG, py05721), were highly expressed under high-density conditions, indicating the molecular basis of the hollow morph of free-living sporangial filaments under high-culture density conditions. Additionally, the brefeldin A treatment indicated that the hollow morph was directly influenced by vacuole formation-related vesicle traffic. Others DEGs related to cell wall components, zinc-finger proteins, ASPO1527, cell cycle and cytoskeleton were highly expressed in the low density with low-light group, which might be related to the formation and release of conchospores. These results provide a deeper understanding of sporangial filaments in Neopyropia yezoensis and related species.

Effect of Fucoidan on Angiogenesis and Gene Expression in Human Umbilical Vein Endothelial Cells (후코이단이 혈관 내피세포의 신생혈관 생성 효과 및 관련 유전자의 발현에 미치는 영향)

  • Park, Ho;Kim, Beom-Su
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.323-328
    • /
    • 2017
  • Angiogenesis is a process including members of the angiogenic factors. In particular, fibroblast growth factor 2 (FGF2) is considered the most potent angiogenic factor because it promotes cell proliferation and tube formation. A recent study reported that fucoidan derived from marine plant potentiated FGF-2 induced tube formation in human endothelial cells. On the other hand, the molecular mechanisms involved in the angiogenic activity of fucoidan and FGF2 are unknown. In this study, a fucoidan treatment promoted angiogenesis induced by FGF2. The effects of fucoidan on FGF2-induced angiogenesis were confirmed by a proliferation assay using a CellTiter96 Aqueous One solution after a treatment with fucoidan and FGF2. The tube formation and wound healing assay for the angiogenic activity were also confirmed. Reverse transcription PCR showed a change in the mRNA of vascular endothelial growth factor-A (VEGF-A), intercellular adhesion molecule-1 (ICAM-1), matrix metallopeptidase9 (MMP9), and the signal transducer and activator of transcription3 (STAT3). In summary, the Fucoidan/FGF2 treatment induced an increase in cell proliferation, improved the tube formation and wound healing activity, and altered the STAT3, VEGF-A, ICAM-1, and MMP9 mRNA expression levels. Further research will be needed to provide a scientific explanation in terms of cell-signaling and confirm the present findings.

Effects of Hypobaric Conditions on Apoptosis Signalling Pathways in HeLa Cells

  • Arican, Gul Ozcan;Khalilia, Walid;Serbes, Ugur;Akman, Gizem;Cetin, Idil;Arican, Ercan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.5043-5047
    • /
    • 2014
  • Nowadays increasing effectiveness in cancer therapy and investigation of formation of new strategies that enhance antiproliferative activity against target organs has become a subject of interest. Although the molecular mechanisms of apoptosis can not be fully explained, it is known that cell suicide program existing in their memory genetically is activated by pathophysiological conditions and events such as oxidative stress. Low pressure (hypobaric) conditions that create hypoxia promote apoptosis by inhibiting cell cycling. In this study, determination of the effects of fractional hypobaric applications at different times on HeLa cells at cellular and molecular levels were targeted. Experiments were carried out under hypobaric conditions (35.2 kPa) in a specially designed hypobaric cabin including 2% $O_2$ and 98% N. Application of fractional hypobaric conditions was repeated two times for 3 hours with an interval of 24 hours. At the end of the implementation period cells were allowed to incubate for 24 hours for activation of repair mechanisms. Cell kinetic parameters such as growth rate (MTT) and apoptotic index were used in determination of the effect of hypobaric conditions on HeLa cells. Also in our study expression levels of the Bcl-2 gene family that have regulatory roles in apoptosis were determined by the RT-PCR technique to evaluate molecular mechanisms. The results showed that antiproliferative effect of hypobaric conditions on HeLa cells started three hours from the time of application and increased depending on the period of exposure. While there was a significant decrease in growth rate values, there was a significant increase in apoptotic index values (p<0.01). Also molecular studies showed that hypobaric conditions caused a significant increase in expression level of proapoptotic gene Bax and significant decrease in antiapoptotic Bfl-1. Consequently fractional application of hypobaric conditions on HeLa cell cultures increased both antiproliferative and apoptotic effects and these effects were triggered by the Bax gene.

IMMUNOHISTOCHEMICAL DETECTION OF GROWTH FACTORS AND EXTRACELLULAR MATRIX PROTEINS IN THE DEGENERATING TISSUES OF PRE-AND POSTNATAL HUMAN CLEFT LIP AND PALATE (태생 및 생후 구순.구개열에 나타나는 조직변성에 대한 성장인자와 세포외 기질 단백의 면역조직화학적 연구)

  • Min, Bong-Gi;Lee, Suk-Keun;Park, Young-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.6
    • /
    • pp.421-433
    • /
    • 2002
  • In order to elucidate the pathogenesis of cleft lip and palate, first of all, it is necessary to understand the developmental mechanisms of growth factors and extracellular matrix proteins in the tissues of cleft lip and palate. We have performed immunohistochemical studies on human cleft lip and palate tissues to elucidate the pathogenetic implications of cleft lip and palate. 16 specimens from postnatal human cleft lip and palate subjects and 17 specimens from autopsy of prenatal human cleft lip and palate were fixed in 10% buffered formalin, embedded in paraffin. The sections were routinely stained by hematoxylin and eosin, also stained by PAS, and followed by immunohistochemical stainings using the antiseras of growth factors and extracellular matrix proteins such as PCNA, S-100, c-erb-B2, MMP-3, MMP-10, HSP-70, transglutaninase-C, E-cadherin, VEGF, vWF. Both the prenatal and postnatal specimens of cleft lip and palate showed dysplastic proliferation of the basal cell layer, increased infiltration of melanocytes into mucosal epithelium, sebaceous gland hyperplasia ingrowing into the muscular tissue of lip and palate, and fatty infiltration into the submucosal deep connective tissue. The strong reactions of MMP-3 and HSP-70 were detected in the tissues of cleft lip and palate, especially increased in degenerating muscle bundles, while the immunostainings of PCNA and c-erb-B2 were weakly positive in the tissues of cleft lip and palate. These data suggest that the retrogressive tissue degeneration around the cleft areas persistently exist during the prenatal and postnatal period after cleft formation, and the sebaceous gland hyperplasia and fatty infiltration with the intense expression of MMP-3 and HSP-70 is closely related to the muscular degeneration around the cleft area.

Induction of Apoptosis in AGS Human Gastric Cancer Cell by Ethanol Extract of Ganoderma lucidum (영지 약침액이 인체 위암 세포 성장억제 및 세포사멸 유발에 미치는 영향)

  • Lee, Byung-Hoon;Kim, Hong-Gi;Kim, Cheol-Hong;Youn, Hyoun-Min;Song, Choon-Ho;Jang, Kyung-Jeon
    • Korean Journal of Acupuncture
    • /
    • v.29 no.2
    • /
    • pp.271-289
    • /
    • 2012
  • Objectives : Ganoderma lucidum(Ganoderma or lingzhi, 靈芝) is a well-known oriental medical mushroom containing many bioactive compounds. The possible mechanisms involved in its effects on cancer cells remain to be elucidated. In the present study, the anti-proliferative and apoptotic activities of the G. lucidum ethanol extract(GEE), in AGS human gastric cancer cells were investigated. Methods : It was found that exposure of AGS cells to GEE resulted in the growth inhibition in a dose and time dependent manner as measured by trypan blue count and MTT assay. The anti-proliferative effect of GEE treatment in AGS cells was associated with morphological changes and formation of apoptotic bodies, and the flow cytometry analysis confirmed that GEE treatment increased the populations of apoptotic-sub G1 phase. Growth inhibition and apoptosis of AGS cells by GEE were connected with a concentration and time-dependent up-regulation of tumour necrosis factor-related apoptosis-inducing ligand(TRAIL) expression. Results : The levels of XIAP and survivin expression, members of IAP family proteins, were gradually down-regulated by GEE treatment. However other members of IAP family proteins such as cIAP-1 and cIAP-2 remained unchanged in GEE-treated AGS cells. GEE treatment also induced the proteolytic activation of caspase-3, caspase-8 and caspase-9 and a concomitant degradation of poly(ADP-ribose) polymerase(PARP) protein, a caspase-3 substrate protein. Additionally, GEE-induced apoptosis was associated with the inhibition of Akt activation in a concentration and time-dependent manner, and pre-treatment with LY294002, a phosphoinositide 3-kinase(PI3K)/Akt inhibitor, significantly increased GEE-induced growth inhibition and apoptosis. Conclusions : Therefore, G. lucidum has a strong potential as a therapeutic agent for preventing cancers such as gastric cancer cells.

Morphological study of $SF_6$ clathrate hydrate crystal ($SF_6$ 하이드레이트 결정 성장의 특성)

  • Lee, Yoon-Seok;Lee, Hyun-Ju;Lee, Eun-Kyung;Kim, Soo-Min;Lee, Ju-Dong;Kim, Yang-Do
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.711-711
    • /
    • 2009
  • Global warming has been widely recognized as a serious problem threatening the future of human beings. It is caused by the buildup in the atmosphere of greenhouse gases, such as carbon dioxide, methane, hydrofluorocarbons (HFCs), and sulfur hexafluoride (SF6). Particularly, SF6 has extremely high global warming potential compare to those of other global warming gases. One option for mitigating this greenhouse gas is the development of an effective process for capturing and separating these gases from anthropogenic sources. In general, gas hydrates can be formed under high pressure and low temperature. However, SF6 gas is known to form hydrate under relatively milder conditions. Therefore, technological and economical effects could be expected for the separation of SF6 gas from waste gas mixtures. In this study, we carried out morphological study for the SF6 hydrate crystals to understand its formation and growth mechanisms. The observations were made in high-pressure optical cell charged with liquid water and SF6 gas at constant pressure and temperature. Initially SF6 hydrate formed at the surface between gas and liquid regions, and then subsequent dendrite crystals grew at the wall above the gas/water interface. The visual observations of crystal nucleation, migration, growth and interference were reported. The detailed growth characteristics of SF6 hydrate crystals were discussed in this study.

  • PDF

OIP5 is a highly expressed potential therapeutic target for colorectal and gastric cancers

  • Chun, Ho-Kyung;Chung, Kyung-Sook;Kim, Hee-Cheol;Kang, Jung-Eun;Kang, Min-Ah;Kim, Jong-Tae;Choi, Eun-Hwa;Jung, Kyeong-Eun;Kim, Moon-Hee;Song, Eun-Young;Kim, Seon-Young;Won, Mi-Sun;Lee, Hee-Gu
    • BMB Reports
    • /
    • v.43 no.5
    • /
    • pp.349-354
    • /
    • 2010
  • Previously, we reported that overexpression of Opa (Neisseria gonorrhoeae opacity-associated)-interacting protein 5 (OIP5) caused multi-septa formation and growth defects, both of which are considered cancer-related phenotypes. To evaluate OIP5 as a possible cancer therapeutic target, we examined its expression level in 66 colorectal cancer patients. OIP5 was upregulated about 3.7-fold in tumors and over 2-fold in 58 out of 66 colorectal cancer patients. Knockdown of OIP5 expression by small interfering RNA specific to OIP5 (siOIP5) resulted in growth inhibition of colorectal and gastric cancer cell lines. Growth inhibition of SNU638 by siOIP5 caused an increase in sub-G1 DNA content, as measured by flow cytometry, as well as an apoptotic gene expression profile. These results indicate that knockdown of OIP5 may induce apoptosis in cancer cells. Therefore, we suggest that OIP5 might be a potential cancer therapeutic target, although the mechanisms of OIP5-induced carcinogenesis should be elucidated.

Induction of Apoptotic Cell Death by Methanol Extract of Houttuynia cordata Thunb. in A549 Human Lung Carcinoma Cells (어성초 메탄올 추출물에 의한 A549 인체 폐암세포 사멸유도에 관한 연구)

  • Hong, Su-Hyun;Park, Cheol;Hong, Sang-Hoon;Choi, Byung-Tae;Lee, Yong-Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1584-1592
    • /
    • 2006
  • Houttuynia cordata Thunb, well known as 'E-Sung-Cho' in Korea, is traditional medicinal plant generally used in Oriental medicine therapy. We previously reported that the water extract of H. cordata inhibited cell proliferation and induced apoptosis in human breast carcinoma cells. In the present study, we investigated the biochemical mechanisms of anti-proliferative effects by the methanol extract of H. cordata (MEHC) in human lung carcinoma A549 cells. It was found that MEHC could inhibit the cell growth in a dose-dependent manner, which was associated with morphological change and apoptotic cell death as determined by formation of apoptotic bodies, DNA fragmentation and increased populations of apoptotic-sub G1 phase cells. Apoptosis of A549 cells by MEHC was also connected with a down-regulation of anti-apoptotic Bcl-2 and inhibitor of apoptosis proteins (IAPs) expression. MEHC treatment induced the proteolytic activation of caspase-3, caspase-8 and caspase-9, and a concomitant inhibition of poly(ADP-ribose) polymerase (PARP), ${\beta}$-catenin and phospholipase (PLC)-${\gamma}$1 protein expression. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of H. cordata.

Characterization and Resistance Mechanisms of A 5-fluorouracil-resistant Hepatocellular Carcinoma Cell Line

  • Gu, Wei;Fang, Fan-Fu;Li, Bai;Cheng, Bin-Bin;Ling, Chang-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4807-4814
    • /
    • 2012
  • Purpose: The chemoresistance of human hepatocellular carcinoma (HCC) to cytotoxic drugs, especially intrinsic or acquired multidrug resistance (MDR), still remains a major challenge in the management of HCC. In the present study, possible mechanisms involved in MDR of HCC were identified using a 5-fluorouracil (5-FU)-resistant human HCC cell line. Methods: BEL-7402/5-FU cells were established through continuous culturing parental BEL-7402 cells, imitating the pattern of chemotherapy clinically. Growth curves and chemosensitivity to cytotoxic drugs were determined by MTT assay. Doubling times, colony formation and adherence rates were calculated after cell counting. Morphological alteration, karyotype morphology, and untrastructure were assessed under optical and electron microscopes. The distribution in the cell cycle and drug efflux pump activity were measured by flow cytometry. Furthermore, expression of potential genes involved in MDR of BEL-7402/5-FU cells were detected by immunocytochemistry. Results: Compared to its parental cells, BEL-7402/5-FU cells had a prolonged doubling time, a lower mitotic index, colony efficiency and adhesive ability, and a decreased drug efflux pump activity. The resistant cells tended to grow in clusters and apparent changes of ultrastructures occurred. BEL-7402/5-FU cells presented with an increased proportion in S and G2/M phases with a concomitant decrease in G0/G1 phase. The MDR phenotype of BEL-7402/5-FU might be partly attributed to increased drug efflux pump activity via multidrug resistance protein 1 (MRP1), overexpression of thymidylate synthase (TS), resistance to apoptosis by augmentation of the Bcl-xl/Bax ratio, and intracellular adhesion medicated by E-cadherin (E-cad). P-glycoprotein (P-gp) might play a limited role in the MDR of BEL-7402/5-FU. Conclusion: Increased activity or expression of MRP1, Bcl-xl, TS, and E-cad appear to be involved in the MDR mechanism of BEL-7402/5-FU.

Ethanol Extract of Ganoderma lucidum Augments Cellular Anti-oxidant Defense through Activation of Nrf2/HO-1

  • Lee, Yoo-hwan;Kim, Jung-hee;Song, Choon-ho;Jang, Kyung-jeon;kim, Cheol-hong;Kang, Ji-Sook;Choi, Yung-hyun;Yoon, Hyun-Min
    • Journal of Pharmacopuncture
    • /
    • v.19 no.1
    • /
    • pp.59-69
    • /
    • 2016
  • Objectives: The mushroom Ganoderma lucidum has been widely used as a traditional herbal medicine for many years. Although several studies have focused on the anti-oxidative activity of this mushroom, the molecular mechanisms underlying its activity have not yet been clearly established. The present study investigated the cytoprotective effect of ethanol extract of Ganoderma lucidum (EGL) against oxidative stress (hydrogen peroxide, $H_2O_2$) and elucidated the underlying mechanisms in a C2C12 myoblast cell line. Methods: Oxidative stress markers were determined by using the comet assay to measure reactive oxygen species (ROS) generation and deoxyribonucleic acid (DNA) damage. Cell viability and Western blotting analyses were employed to evaluate the cellular response to EGL and $H_2O_2$ in C2C12 cells. Transfection with nuclear factor erythroid 2-related factor 2 (Nrf2)-specific small interfering ribonucleic acid (siRNA) was conducted to understand the relationship between Nrf2 expression and $H_2O_2$-induced growth inhibition. Results: The results showed that EGL effectively inhibited $H_2O_2$-induced growth and the generation of ROS. EGL markedly suppressed $H_2O_2$-induced comet-like DNA formation and phosphorylation of histone H2AX at serine 139 ($p-{\gamma}H2AX$), a widely used marker of DNA damage, suggesting that EGL prevented $H_2O_2$-induced DNA damage. Furthermore, the EGL treatment effectively induced the expression of Nrf2, as well as heme oxygenase-1 (HO-1), with parallel phosphorylation and nuclear translocation of Nrf2 in the C2C12 myoblasts. However, zinc protoporphyrin IX, a HO-1 inhibitor, significantly abolished the protective effects of EGL against $H_2O_2$-induced accumulation of ROS and reduced cell growth. Notably, transient transfection with Nrf2-specific siRNA attenuated the cytoprotective effects and HO-1 induction by EGL, indicating that EGL induced the expression of HO-1 in an Nrf2-dependent manner. Conclusion: Collectively, these results demonstrate that EGL augments the cellular anti-oxidant defense capacity through activation of Nrf2/HO-1, thereby protecting C2C12 myoblasts from $H_2O_2$-induced oxidative cytotoxicity.