DOI QR코드

DOI QR Code

OIP5 is a highly expressed potential therapeutic target for colorectal and gastric cancers

  • Received : 2010.02.16
  • Accepted : 2010.03.15
  • Published : 2010.05.31

Abstract

Previously, we reported that overexpression of Opa (Neisseria gonorrhoeae opacity-associated)-interacting protein 5 (OIP5) caused multi-septa formation and growth defects, both of which are considered cancer-related phenotypes. To evaluate OIP5 as a possible cancer therapeutic target, we examined its expression level in 66 colorectal cancer patients. OIP5 was upregulated about 3.7-fold in tumors and over 2-fold in 58 out of 66 colorectal cancer patients. Knockdown of OIP5 expression by small interfering RNA specific to OIP5 (siOIP5) resulted in growth inhibition of colorectal and gastric cancer cell lines. Growth inhibition of SNU638 by siOIP5 caused an increase in sub-G1 DNA content, as measured by flow cytometry, as well as an apoptotic gene expression profile. These results indicate that knockdown of OIP5 may induce apoptosis in cancer cells. Therefore, we suggest that OIP5 might be a potential cancer therapeutic target, although the mechanisms of OIP5-induced carcinogenesis should be elucidated.

Keywords

References

  1. Williams, J. M., Chen, G. C., Zhu, L. and Rest, R. F. (1998) Using the yeast two-hybrid system to identify human epithelial cell proteins that bind gonococcal Opa proteins: intracellular gonococci bind pyruvate kinase via their Opa proteins and require host pyruvate for growth. Mol. Microbiol. 27, 171-186. https://doi.org/10.1046/j.1365-2958.1998.00670.x
  2. Pawlak, A., Toussaint, C., Levy, I., Bulle, F., Poyard, M., Barouki, R. and Guellaen, G. (1995) Characterization of a large population of mRNAs from human testis. Genomics 26, 151-158. https://doi.org/10.1016/0888-7543(95)80096-5
  3. Naetar, N., Hutter, S., Dorner, D., Dechat, T., Korbei, B., Gotzmann, J., Beug, H. and Foisner, R. (2007) LAP2alpha-binding protein LINT-25 is a novel chromatin-associated protein involved in cell cycle exit. J. Cell Sci. 120, 737-747. https://doi.org/10.1242/jcs.03390
  4. Fujita, Y., Hayashi, T., Kiyomitsu, T., Toyoda, Y., Kokubu, A., Obuse, C. and Yanagida, M. (2007) Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev. Cell 12, 17-30. https://doi.org/10.1016/j.devcel.2006.11.002
  5. Chung, K. S., Jang, Y. J., Kim, N. S., Park, S. Y., Choi, S. J., Kim, J. Y., Ahn, J. H., Lee, H. J., Lim, J. H., Song, J. H., Ji, J. H., Oh, J. H., Song, K. B., Yoo, H. S. and Won, M. (2007) Rapid screen of human genes for relevance to cancer using fission yeast. J. Biomol. Screen. 12, 568-577. https://doi.org/10.1177/1087057107301007
  6. Nakamura, Y., Tanaka, F., Nagahara, H., Ieta, K., Haraguchi, N., Mimori, K., Sasaki, A., Inoue, H., Yanaga, K. and Mori, M. (2007) Opa interacting protein 5 (OIP5) is a novel cancer-testis specific gene in gastric cancer. Ann. Surg. Oncol. 14, 885-892. https://doi.org/10.1245/s10434-006-9121-x
  7. Woessmann, W., Damm-Welk, C., Fuchs, U. and Borkhardt, A. (2003) RNA interference: new mechanisms for targeted treatment? Rev. Clin. Exp. Hematol. 7, 270-291.
  8. Devi, G. R. (2006) siRNA-based approaches in cancer therapy. Cancer. Gene. Ther. 13, 819-829. https://doi.org/10.1038/sj.cgt.7700931
  9. Kurreck, J. (2004) Expediting target identification and validation through RNAi. Expert. Opin. Biol. Ther. 4, 427-429. https://doi.org/10.1517/14712598.4.3.427
  10. Masiero, M., Nardo, G., Indraccolo, S. and Favaro, E. (2007) RNA interference: implications for cancer treatment. Mol. Aspects Med. 28, 143-166. https://doi.org/10.1016/j.mam.2006.12.004
  11. Zhai, D., Jin, C., Huang, Z., Satterthwait, A. C. and Reed, J. C. (2008) Differential regulation of Bax and Bak by anti-apoptotic Bcl-2 family proteins Bcl-B and Mcl-1. J. Biol. Chem. 283, 9580-9586. https://doi.org/10.1074/jbc.M708426200
  12. Ruiz-Vela, A., Opferman, J. T., Cheng, E. H. and Korsmeyer, S. J. (2005) Proapoptotic BAX and BAK control multiple initiator caspases. EMBO Rep. 6, 379-385. https://doi.org/10.1038/sj.embor.7400375
  13. Mizuta, T., Shimizu, S., Matsuoka, Y., Nakagawa, T., and Tsujimoto, Y. (2007) A Bax/Bak-independent mechanism of cytochrome c release. J. Biol. Chem. 282, 16623-16630. https://doi.org/10.1074/jbc.M611060200
  14. Zong, W. X., Li, C., Hatzivassiliou, G., Lindsten, T., Yu, Q. C., Yuan, J. and Thompson, C. B. (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J. Cell Biol. 162, 59-69. https://doi.org/10.1083/jcb.200302084
  15. Andrade, F., Casciola-Rosen, L. A. and Rosen, A. (2004) Granzyme B-induced cell death. Acta Haematol. 111, 28-41. https://doi.org/10.1159/000074484
  16. Germain, M., Milburn, J. and Duronio, V. (2008) MCL-1 inhibits BAX in the absence of MCL-1/BAX Interaction. J. Biol. Chem. 283, 6384-6392. https://doi.org/10.1074/jbc.M707762200
  17. Spankuch, B., Kurunci-Csacsko, E., Kaufmann, M. and Strebhardt, K. (2007) Rational combinations of siRNAs targeting Plk1 with breast cancer drugs. Oncogene 26, 5793-5807. https://doi.org/10.1038/sj.onc.1210355
  18. Yoo, J. Y., Kim, J. H., Kim, J., Huang, J. H., Zhang, S. N., Kang, Y. A., Kim, H. and Yun, C. O. (2008) Short hairpin RNA-expressing oncolytic adenovirus-mediated inhibition of IL-8: effects on antiangiogenesis and tumor growth inhibition. Gene Ther. 15, 635-651. https://doi.org/10.1038/gt.2008.3
  19. Halder, J., Kamat, A. A., Landen, C. N., Jr., Han, L. Y., Lutgendorf, S. K., Lin, Y. G., Merritt, W. M., Jennings, N. B., Chavez-Reyes, A., Coleman, R. L., Gershenson, D. M., Schmandt, R., Cole, S. W., Lopez-Berestein, G. and Sood, A. K. (2006) Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin. Cancer Res. 12, 4916-4924. https://doi.org/10.1158/1078-0432.CCR-06-0021
  20. Halder, J., Lin, Y. G., Merritt, W. M., Spannuth, W. A., Nick, A. M., Honda, T., Kamat, A. A., Han, L. Y., Kim, T. J., Lu, C., Tari, A. M., Bornmann, W., Fernandez, A., Lopez-Berestein, G. and Sood, A. K. (2007) Therapeutic efficacy of a novel focal adhesion kinase inhibitor TAE226 in ovarian carcinoma. Cancer Res. 67, 10976-10983. https://doi.org/10.1158/0008-5472.CAN-07-2667
  21. Mook, O. R., Baas, F., de Wissel, M. B. and Fluiter, K. (2007) Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol. Cancer Ther. 6, 833-843. https://doi.org/10.1158/1535-7163.MCT-06-0195
  22. Aigner, A. (2006) Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. J. Biotechnol. 124, 12-25. https://doi.org/10.1016/j.jbiotec.2005.12.003
  23. Kim, S. I., Shin, D., Choi, T. H., Lee, J. C., Cheon, G. J., Kim, K. Y., Park, M. and Kim, M. (2007) Systemic and specific delivery of small interfering RNAs to the liver mediated by apolipoprotein A-I. Mol. Ther. 15, 1145-1152. https://doi.org/10.1038/sj.mt.6300168

Cited by

  1. RNA-Seq Analyses Generate Comprehensive Transcriptomic Landscape and Reveal Complex Transcript Patterns in Hepatocellular Carcinoma vol.6, pp.10, 2011, https://doi.org/10.1371/journal.pone.0026168
  2. Genome-wide screening and co-expression network analysis identify recurrence-specific biomarkers of esophageal squamous cell carcinoma vol.35, pp.11, 2014, https://doi.org/10.1007/s13277-014-2388-9
  3. Cancer/Testis OIP5 and TAF7L Genes are Up-Regulated in Breast Cancer vol.16, pp.11, 2015, https://doi.org/10.7314/APJCP.2015.16.11.4623
  4. Expression of Opa interacting protein 5 (OIP5) is associated with tumor stage and prognosis of clear cell renal cell carcinoma vol.115, pp.8, 2013, https://doi.org/10.1016/j.acthis.2013.03.008
  5. Characterization of an Opa interacting protein 5 involved in lung and esophageal carcinogenesis vol.103, pp.3, 2012, https://doi.org/10.1111/j.1349-7006.2011.02167.x
  6. Expression of Cancer Testis Antigens in Colorectal Cancer: New Prognostic and Therapeutic Implications vol.2016, 2016, https://doi.org/10.1155/2016/1987505
  7. Expression analysis of four testis-specific genes AURKC, OIP5, PIWIL2 and TAF7L in acute myeloid leukemia: a gender-dependent expression pattern vol.30, pp.1, 2013, https://doi.org/10.1007/s12032-012-0368-8
  8. Human Noxin is an anti-apoptotic protein in response to DNA damage of A549 non-small cell lung carcinoma vol.134, pp.11, 2014, https://doi.org/10.1002/ijc.28600
  9. Possible Involvement of Opa-Interacting Protein 5 in Adipose Proliferation and Obesity vol.9, pp.2, 2014, https://doi.org/10.1371/journal.pone.0087661
  10. Opa interacting protein 5 acts as an oncogene in bladder cancer 2017, https://doi.org/10.1007/s00432-017-2485-4
  11. Telmisartan Exerts Pleiotropic Effects in Endothelial Cells and Promotes Endothelial Cell Quiescence and Survival vol.33, pp.8, 2013, https://doi.org/10.1161/ATVBAHA.112.300985
  12. OIP5 Expression Sensitize Glioblastoma Cells to Lomustine Treatment vol.66, pp.3, 2018, https://doi.org/10.1007/s12031-018-1184-1
  13. Identifying novel biomarkers in hepatocellular carcinoma by weighted gene co-expression network analysis pp.07302312, 2019, https://doi.org/10.1002/jcb.28420