• 제목/요약/키워드: Formaldehyde gas

Search Result 124, Processing Time 0.023 seconds

A Pilot Study on Emission Analysis of Air Pollutants Produced from Portable Recycling of Asphalt Concrete (간이이동법에 의한 폐아스콘 재생시 대기오염물의 배출분석에 대한 실험적 연구)

  • Lee, Byeong-Kyu;Kim, Haeng-Ah;Jeong, Ui-Ryang;Duong, Trang;Chae, Po-Gi;Park, Kyung-Won
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.385-392
    • /
    • 2007
  • Currently, portable equipment for recycling of waste asphalt concrete (ASCON) has been used. However, any air pollution control devices are not attached in the simple portable one. Thus, a lot of air pollutants have been produced from recycling processes of waste ASCON which resulted from aging of paved roads or repavement of roads. This study deals with a preliminary result of concentration analysis of air pollutants obtained from a pilot and a real recycling processes of waste ASCON using simple portable recycling equipment. Air pollutants were taken from 4 steps of the pilot recycling process including an initial heating by liquid petroleum gas (LPG), intermediate heating and melting (H&M) process, final H&M process, and pavement processes using recycled ASCON at the recycling site. Also, air pollutants were taken front 4 steps of the real recycling processes including an initial H&M, final H&M and mixing, loading of recycled ASCON to dump trucks, and at the recycling site after leaving the loaded dump trucks for real pavement sites. The air pollutants measured in this study include volatile organic compounds (VOCs), aldehydes, particulate matter (PM: PM1, PM2.5, PM7, PM10, TSP (total suspended particulate)). The identified concentrations of VOCs increased with increasing time or degree for H&M of waste ASCON. In particular, very high concentrations of the VOCs at the status of complete melting, which is exposed to the air, of the waste ASCON just before paving tv the recycled ASCON at the recycling site. Also, considerable amount of VOCs were identified from the recycling equipment after the dump trucks leaded by recycled ASCON leaved the recycling site for the pavement sites. The relative level of formaldehyde exceeded 80% of the aldehydes Identified in the recycling processes. This is because the waste ASCON is exposed to direct flame of LPG during H&M processes. The PM concentrations measured in the winter recycling processes, such as the loading and rotation processes of waste ASCON into/in the recycling equipment for H&M, were much higher than those in the summer ones. In particular, the concentrations of coarse particles such as PM7 and PM10 during the winter recycling were very high as compared those during the summer one.

First-time estimation of HCHO column in major cities over Asia using multiple regression with satellite data (위성자료와 다중회귀분석법을 이용한 아시아 주요도시의 포름알데하이드 칼럼농도 추정연구)

  • Choi, Wonei;Hong, Hyunkee;Park, Junsung;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.523-530
    • /
    • 2015
  • A Multiple Regression Method (MRM) is used for the first time with Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to estimate formaldehyde (HCHO) Vertical Column Density (VCD). For a 3.5-year period from January 2005 through July 2008, HCHO VCD estimation is investigated in cities over Asia in two categorized areas: (1) Major cities in Northeast Asia (Beijing, Seoul, and Tokyo), (2) Major cities in Southeast Asia (New Delhi, Dhaka, and Bangkok). In the Major cities in Northeast Asia, there are good agreements between HCHO estimated by the multiple linear regression method ($HCHO_{MRM}$) and HCHO measured by OMI ($HCHO_{OMI}$) (0.78 < $R^2$ < 0.82). However, in Major cities in Southeast Asia, there were poor agreements between $HCHO_{OMI}$ and $HCHO_{MRM}$ (0.24 < $R^2$ < 0.39). In addition, an unbiased assessment of the MRM performance using modeling and validation groups shows that the performance of the MRM based on separate modeling and validation groups is comparable to that using all the data for deriving Multiple Regression Equations (MREs). This study demonstrates that MRM can be an alternative tool for HCHO estimation in certain areas over Asia.

Monitoring of Methanol Levels in Commercial Detergents and Rinse Aids (시판 세척제 및 헹굼보조제 중 메탄올 함량 모니터링)

  • Park, Na-youn;Yang, Heedeuk;Lee, Jeoungsun;Kim, Junghoan;Park, Se-Jong;Choi, Jae Chun;Kim, MeeKyung;Kho, Younglim
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.263-268
    • /
    • 2019
  • Methanol is a toxic alcohol used in various products such as antifreeze, detergent, disinfectant and industrial solvent. In the human body, methanol is oxidized to formaldehyde and formic acid, which can lead to metabolic acidosis, optic nerve impairment, and death. In this study, the methanol levels in detergents (n=191) and rinse aids (n=13) were analyzed by gas chromatography-headspace-mass spectrometry (GC-HS-MS). Limit of detection was 1.09 mg/kg, accuracy and precision were 91.1-97.9% and <10%, and it was suitable for quantitative analysis. This analysis method was simple and fast with a higher recovery rate than the conventional MFDS (Ministry of Food and Drug Safety) method of diluting the sample in water and putting it in a headspace vial.

Evaluation of Indoor Air Quality in a Department of Radiation Oncology Located Underground (지하에 위치한 방사선종양학과에서의 실내공기 질 평가)

  • Kim, Won-Taek;Shin, Yong-Chul;Kang, Dong-Mug;Ki, Yong-Kan;Kim, Dong-Won;Kwon, Byung-Hyun
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.243-252
    • /
    • 2005
  • Purpose: Indoor air quality (IAQ) in the radiation treatment center which is generally located underground is important to the health of hospital workers and patients treated over a long period of time. this study was conducted to measure and analyze the factors related to IAQ and subjective symptoms of sick building syndrome, and to establish the causes influencing IAQ and find a solution to the problems. Methods and Materials : Self administrated questionnaire was conducted to check the workers' symptoms and understanding of the work environment. Based on a preliminary investigation, the factors related to IAQ such as temperature, humidity, fine particulate. carbon dioxide, carbon monoxide, formaldehyde, total volatile organic compounds (TVOC), and radon gas were selected and measured for a certain period of time in specific sites where hospital workers stay long in a day. And we also evaluated the surrounding environment and the efficiency of the ventilating system simultaneously, and measured the same factors at the first floor (outdoor) to compare with outdoor all quality, All collected data were assessed by the recommended standard for IAQ of the domestic and international environmental organizations. Results: Hospital workers were discontented with foul odors, humidity and particulate. They complained symptoms related to musculo-skeletal system, neurologic system, and mucosal-irritatation. Most of the factors were not greater than the recommended standard, but the level of TVOC was third or fourth times as much as the measuring level of some offices in the United States. The frequency and the amount of the ventilating system were adequate, however, the problem arising in the position of outdoor-air inlets and indoor-air outlets involved a risk of the indraft of contaminated air. A careful attention was a requirement in handling and keeping chemical substances including a developing solution which has a risk of TVOC emissions, and repositioning the ventilating system was needed to solve the contaminated-air circulation immediately Conclusion We verified that some IAQ-related factors and inadequate ventilating system could cause subjective symptoms in hospital workers. The evaluation of IAQ was surely needed to improve the underground working environments for hospital workers and patients. On the basis of these data, from now on, we should actively engage in designs of the department of radiation oncology or improvement in environments of the existing facilities.