• 제목/요약/키워드: Formaldehyde gas

검색결과 124건 처리시간 0.023초

의약품 제조시설의 포름알데히드가스 훈증살균과 최근 실내무균화방법의 동향

  • 한국공기청정협회
    • 공기청정기술
    • /
    • 제23권3호
    • /
    • pp.34-43
    • /
    • 2010
  • In most productive facility of pharmaceutical companies, the fumigation using formaldehyde gas has been put into operation. Because formaldehyde gas is so bactericidal as to sterilize bacterial spore which can not be sterilized with usual disinfectants, it has been used for fumigation in many facilities such as facility of experimental animals, research institute and productive facility of pharmaceutical companies which are required to be high level of biological clean. However, the use of formaldehyde is recently under the strict management because of its causing of sick house and carcinogenesis. We introduce the conditions of sterilization using formaldehyde gas, the examples of sterilization using formaldehyde gas in a pharmaceutical manufacture and the problems of use of formaldehyde against environments and health. Further, we describe the characteristics and future subjects of the sterilization method using gasified oxidants such as hydrogen peroxide, peracetic acid and chlorine oxide.

  • PDF

Formaldehyde 측정을 위한 PZT 압전 바이오센서 개발 (Development of PZT Piezoelectric Biosensor for the Detection of Formaldehyde)

  • 김병옥;곽성곤;임동준
    • KSBB Journal
    • /
    • 제13권5호
    • /
    • pp.477-482
    • /
    • 1998
  • A biosensor with PZT piezoelectric ceramic crystal was developed for the detection of formaldehyde gas. Poled PZT piezoelectric ceramic disk was made from ZrO2, TiO2 and Nb2O5, together with the addition of PbO and polyvinyl alcohol, through various processes of mixing, calcination drying, crushing, forming, sintering, polishing, ion coating and poling. Oscillator circuit of sensor was made of operational amplifier(AD811AN). Formaldehyde dehydrogenase was immobilized onto a piezoelectic ceramic crystal, together with the cofactors, reduced glutathione and nicotinamide adenine dinucleotide. The effect of flow rate on the sensitivity was determined by varing the flow rate of carrier gas from 24.7mL/min to 111.7mL/min through detector cell. The results indicated that as the flow rate was increased, the recovery rate was increased. And a significant increase in the sensitivity was observed in enhanced flow rate of carrier gas. Frequency difference(ΔF) of immobilized PZT piezoelectic disk increased proportionally to the concentration gas and reproduced to repeated exposures of formaldehyde gas(28ppm, Δ68Hz).

  • PDF

Comparison of Formaldehyde Emission of Wood-based Panels with Different Adhesive-hardener Combinations by Gas Chromatography and Standard Methods

  • Eom, Young Geun;Kim, Sumin;Baek, In-Chan;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제33권2호통권130호
    • /
    • pp.29-39
    • /
    • 2005
  • Formaldehyde emissions from wood-based panels bonded with pine and wattle tannin-based adhesives, urea-formaldehyde resin (UF), melamine-formaldehyde resin (MF), and co-polycondensed resin of urea-melamine-formaldehyde (UMF) were measured by the Japanese standard method using a desiccator (JIS A 1460) and the EN 120 (European Committee For Standardization, 1991) method using the perforator value. In formaldehyde emission, all particleboards made using the wattle tannin-based adhesive with three different hardeners, paraformaldehyde, hexamethylenetetramine, and tris(hydroxyl)nitromethan (TN), satisfied the requirements of grade $E_1$. But only those made using the pine tannin-based adhesive with the hexamine as hardener met the grade $E_1$ requirements. Hexamine was effective in reducing formaldehyde emission in tannin-based adhesives when used as the hardener. While the UF resin showed a desiccator value of $7.1mg/{\ell}$ and a perforator value of 12.1 mg/100 g, the MF resin exhibited a desiccator value of $0.6mg/{\ell}$ and a perforator value of 2.9 mg/100 g. According to the Japanese Industrial Standard and the European Standard, the formaldehyde emission level of the MDF panels made with UF resin in this study came under grade $E_2$. The formaldehyde emission level was dramatically reduced by the addition of MF resin. The desiccator and perforator methods produced proportionally equivalent results. Gas chromatography, a more sensitive and advanced method, was also used. The samples for gas chromatography were gathered during the experiment involving the perforator method. The formaldehyde contents measured by gas chromatography were directly proportional to the perforator values.

실내 대기질 진단을 위한 금속산화물 기반 폼알데하이드 가스센서 연구 동향 (Review of Metal Oxide-based Formaldehyde Gas Sensor to Measure Indoor Air Quality)

  • 김윤화;구원태;장지수;김일두
    • 센서학회지
    • /
    • 제28권6호
    • /
    • pp.377-384
    • /
    • 2019
  • People currently spend more than 80% of their time indoors; therefore, the management of indoor air quality has become an important issue. The contamination of indoor air can cause sick house syndrome and various environmental diseases such as atopy and nephropathy. Formaldehyde gas, which is the main contaminant of indoor air, is lethal even with microscopic exposure; however, it is commonly used as an adhesive and waterproofing agent for indoor building materials. Therefore, there is a need for a gas sensor capable of detecting trace amounts of formaldehyde gas. In this review, we summarize recent studies on metal oxide-based semiconductor gas sensors for formaldehyde gas detection, methods to improve the gas-sensing properties of metal oxides of various dimensions, and the effects of catalysts for the detection of parts-per-billion level gases. Through this, we discuss the necessary characteristics of the metal oxidebased semiconductors for gas sensors for the development of next-generation sensors.

부식산의 오존처리시 포름알데히드 생성에 관한 연구 (A Study on the Formation of Formaldehyde from Humic Acid by Ozonation)

  • 임용섭;이정주;이동석
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.409-413
    • /
    • 1999
  • Chemical oxidation of humic acid by ozonation process was investigated in the batch reactor. Aldehydes and ketone were identified as PFBOA derivatives in ozonated humic acid solutions using gas chromatography with PDECD. The formaldehyde was as a main by-product of ozonation. The characteristics of the formaldehyde production were discussed with respect to concentration at different experimental conditions.

  • PDF

GC-PDECD를 이용한 공기 중 포름알데하이드의 분석 (Determination of Airborne Formaldehyde Using the Gas Chromatograph-Pulsed Discharge Electron Capture Detector)

  • 김희갑;박미진;김만구
    • Environmental Analysis Health and Toxicology
    • /
    • 제17권2호
    • /
    • pp.117-123
    • /
    • 2002
  • A gas chromatographic method for the determination of airborne formaldehyde was established. In order to be highly detectable with the electron capture detector, formaldehyde was derivatized to its pentafluorobenzyl oxime form by reacting with O- (2,3,4,5,6- pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) at pH of 4.6 and temperature of 50$^{\circ}C$ for 1 hour. Air samples were collected into a Tedlar$\^$(R)/ bag followed by transferring into water contained in two impingers in series. Collection efficiency in the front trap was higher than 90%. Measurement of selected indoor and outdoor air samples showed higher formaldehyde concentrations in indoor air environments and the importance of ventilation for reducing indoor pollution.

La1-xSrxMO3(M = Fe, Co, Mn) 물질을 이용한 포름알데히드 가스센서의 제조와 특성 (Fabrication and characteristics of La1-xSrxMO3(M = Fe, Co, Mn) formaldehyde gas sensors)

  • 김한지;최정범;김신도;유광수
    • 센서학회지
    • /
    • 제17권3호
    • /
    • pp.203-209
    • /
    • 2008
  • Thick film formaldehyde (HCHO) gas sensors were fabricated by using $La_1_{-x}Sr_xMO_3$ (M= Fe, Co, Mn) ceramics. The powders of $La_1_{-x}Sr_xMO_3$ (M=Fe, Co, Mn) were synthesized by conventional solid-state reaction method. By using the $La_1_{-x}Sr_xMO_3$ (M=Fe, Co, Mn) paste, the thick-film formaldehyde sensors were prepared on the alumina substrate by silkscreen printing method. The experimental results revealed that $La_1_{-x}Sr_xMO_3$ (M= Fe, Co, Mn) ceramic powder has a perovskite structure and the thick-film sensor shows excellent gas-sensing characteristics to formaldehyde gas (sensitivity of $La_{0.8}Sr_{0.2}FeO_3$, S= 14.7 at operating temperature of $150^{\circ}C$ in 50 ppm HCHO ambient).

헤드스페이스-가스크로마토그래피-질량분석법에 의한 체모 중 포름알데하이드 측정법 연구 (The Study on the Measurement of Formaldehyde in Hair by HS-GC-MS)

  • 신호상;안혜실
    • 한국환경보건학회지
    • /
    • 제32권1호
    • /
    • pp.67-70
    • /
    • 2006
  • A gas chromatography/mass spectrometric method was developed for the determination of formaldehyde in hair. 0.3mg of hair was placed in 10ml headspace vial. 1.5mM pentafluorophenylhydrazine solution (pH 2) in 0.03 M phosphoric acid and $20\;{\mu}l$ of 500 mg/l $acetone-d_6$ as internal standard were added in vial and sealed tightly with cap. The solution was heated for 30 min at $90^{\circ}C$ in heating block. The extraction, the derivatization and the evaporation were performed simultaneously. After heating of the solution, 0.5 ml of headspace was taken up and analyzed by gas chromatography-mass spectrometry (GC-MS). Low limit of detection (LaD) and Low limit of quantitation (LOQ) of formaldehyde were 0.5 and 1.5 ng/g, respectively. The method was used to analyze formaldehyde in rat hair after oral exposure. The developed method may be valuable to be used to analyze formaldehyde in human hair.

RESIN 취급 주물공장 근로자들의 호흡기 건강에 관한 연구 (Respiratory Health of Foundry Workers Exposed to Binding Resin)

  • 최정근;이창옥;백도명;최병순;신용철;정호근
    • Journal of Preventive Medicine and Public Health
    • /
    • 제27권2호
    • /
    • pp.274-285
    • /
    • 1994
  • The effects of resin on the respiratory health have been investigated in 309 workers from four iron and steel foundries and the results compared with those from 122 workers who were not significantly exposed to resin gas and silica dust at the same industries. Phenol-formaldehyde resin was used in the core making and molding processes and workers were exposed to their decomposition products as well as to silica dust containing particulates. The subjects were grouped according to formaldehyde, dust and other gas exposures, and smoking habits were considered also in thi analysis. Standardized respiratory symptom questionnaire was administered by trained interviewers. Chest radiograph, pulmonary funtion tests, and methacholine challenge tests were done. Environmental measurements at the breathing zone were carried out to determine levels of formaldehyde, respiable dust and total dust. Foundry workers had a higher prevalence of symptoms of chronic bronchitis with chronic phlegm and chronic cough when exposed to dust. Exposure to gas was significantly associated with lowered $FEV_1$ and obstructive pulmonary function changes. Exposure to formaldehyde and phenol gas was associated with wheezing symptom among workers, but $FEV_1$ changes after methacholine challenge were not significantly different among different exposure groups. When asthma was defined as the presence of bronchial hyperreactivity with more than 20% decrease in $FEV_1$ after methacholine challenge, 17 workers out of 222 tested had asthma. Fewer asthmatic welters were found among groups exposed to formaldehyde, gas and dust, which indicates a healthy worker effects ill a cross-sectional study. The concentration of formaldehyde gas ranged from 0.24 to 0.43 ppm among studied foundries. The authors conclude that formaldehyde and phenol gas from combusted resin is probably the cause of asthmatic symptoms and also a selection force of those with higher bronchial reactivity away from exposures.

  • PDF

SnO2-ZnO를 이용한 가스 센서의 포름알데히드 가스 감지특성 (Formaldehyde Gas-Sensing Characteristics of SnO2-ZnO Materials)

  • 윤진호;이회중;김정식
    • 대한금속재료학회지
    • /
    • 제48권2호
    • /
    • pp.169-174
    • /
    • 2010
  • A micro gas sensor for formaldehyde (HCHO) gas was fabricated by using MEMS (Micro Electro Mechanical System) technology and the sol-gel process. The sensing materials of the $SnO_2$-ZnO system were synthesized by the sol-gel method. The crystal structure and thermal analysis of the $SnO_{2}$-ZnO were characterized by XRD and DSC-TGA. The fabricated gas sensors were tested at various gas concentrations (0.5~5.0 ppm) and different operation temperatures ($350{\sim}550^{\circ}C$). The $SnO_2$-10 mol%ZnO sensor showed the highest sensitivity ($R_s=0.24$) for 1.0 ppm-formaldehyde at $500^{\circ}C$ and response time (90% saturation time) was within 20 seconds.