• 제목/요약/키워드: Formaldehyde/Urea Molar Ratio

검색결과 20건 처리시간 0.04초

Performance of Urea-Formaldehyde Resins Synthesized at Two Different Low Molar Ratios with Different Numbers of Urea Addition

  • Jeong, Bora;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권2호
    • /
    • pp.221-228
    • /
    • 2019
  • This study reports the performance of urea-formaldehyde (UF) resins prepared at two different low formaldehyde/urea (F/U) mole ratios with different numbers of urea addition during synthesis. The second or third urea was added during the synthesis of UF resins to obtain two different low molar ratios of 0.7 and 1.0, respectively. The molecular weights, cure kinetics, and adhesion performance of these resins were characterized by the gel permeation chromatography, differential scanning calorimetry, and tensile shear strength of plywood, respectively. When the number of urea additions and F/U molar ratio increased, the gelation time decreased, whereas the viscosity and molecular weight increased. Further, the UF resins prepared with the second urea and 1.0 molar ratio resulted in greater activation energy than those with third urea and 0.7 molar ratio. Tensile shear strength and formaldehyde emission (FE) of the plywood that bonded with these resins increased when the number of urea additions and molar ratio increased. These results suggest that the UF resins prepared with 0.7 molar ratio and third urea addition provide lower adhesion performance and FE than those resins with 1.0 mole ratio and the second urea addition.

요소-멜라민 공축합 수지의 요소와 멜라민 혼합비율이 합판의 포름알데히드 방출과 접착성에 미치는 영향 (Effects of Mixing Ratio of Urea and Mlelamine on Formaldehyde Emission and Bonding Properties of Plywoods Manufactured with Urea-Melamine Formaldehyde Adhesives)

  • 박헌;강은창;민경희
    • 한국가구학회지
    • /
    • 제11권1호
    • /
    • pp.53-59
    • /
    • 2000
  • This study was to measure formaldehyde emission and bonding strength of plywoods manufactured with urea-melamine formaldehyde adhesives, which were made from three different mixing ratios of urea and melamine, and with four different formaldehyde/urea-melamine molar ratios of 1.0,1.1,1.2 and 1.4. The results were as follows 1. Amount of formaldehyde emission was the lowest at the first method of molar ratio(F/(M+U)) 1.0. Amounts of formaldehyde emission of experimental manufactured adhesives were lower than that of commercial adhesive. 2. Bonding strength of dry specimen was the highest at the first method of molar ratio(F/(M+U)) 1.4. Dry bonding strength of molar ratio(F/(M+U)) 1.4 was similar to commercial adhesive. 3. Bonding strength of wet specimen was the highest at the second method of molar ratio(F/(M+U)) 1.4. Bonding strength of wet specimen used by the third method of molar ratio(F/(M+U)) 1.4 was almost equal to commercial adhesive.

  • PDF

Curing Characteristics of Low Molar Ratio Urea-Formaldehyde Resins

  • Fan, Dongbin;Li, Jianzhang;Mao, An
    • 접착 및 계면
    • /
    • 제7권4호
    • /
    • pp.45-52
    • /
    • 2006
  • Five low molar ratio urea-formaldehyde (LUF) resins were synthesized in this study. The effects of molar ratio, free formaldehyde content, and catalysts on the curing characteristics of LUF resins were studied by measuring its free formaldehyde content, pH value change after catalysts added, curing rate, and pot life, observing its cured appearance, and analyzing its thermal behavior. The results indicate that: 1) The LUF resin with lower molar ratio than 1.0 can still cure; 2) Free formaldehyde content is not the main factor in affecting curing rate of LUF resin; 3) Compared with ammonium chloride as a traditional catalyst, persulfate salts markedly accelerate the curing rate of LUF resin, and result in the different appearance; 4) the addition of sodium chloride to catalysts can accelerate the curing rate of LUF resin, but the effect is moderate.

  • PDF

요소수지의 F/U 몰비별로 제조된 목질패널의 포름알데히드 장기 방출 경향 (Long Term Formaldehyde Emission Trend of Wood Panels Manufactured by F/U Molar Ratios in Urea Resin Adhesive)

  • 박헌
    • 한국가구학회지
    • /
    • 제11권2호
    • /
    • pp.73-78
    • /
    • 2000
  • This study was carried out to measure formaldehyde emission with the passing of two years from plywood, sliver-board and strand-board bonded with urea resins which were made of 6 f/U molar ratios. The urea resins were manufactured by six kinds of formaldehyde/urea molar ratio of 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0. 1. The plywood with molar ratio of 1.0 satisfied the KS F3101 $F_2$ directly after manufacture. The plywood with molar ratio of 1.2 satisfied m 3 days. The plywood with molar ratio of 1.4 satisfied the $F_3$ in 3 days and the $F_2$ in 600 days. And the plywood with molar ratio of 1.8 and 2.0 satisfied the $F_3$ in 365 days, but didn't satisfy the $F_2$ in 730 days. 2. Sliver-board with molar ratio of 1.0 and 1.2 satisfied the KS F3104 $E_2$ right after manufacture. Sliver-board with molar ratio of 1.4 and 1.6 satisfied in 150 and 360 days, respectively. Sliver-board with molar ratio of 1.8 and 2.0 satisfied in 730 days. 3. Strand-board with molar ratio of 1.0 and 1.2 satisfied the KS F3104$ E_2$ directly after manufacture. Strand-board with molar ratio of 1.4 and 1.6 satisfied in 150 days. But Strand-board with molar ratio of 1.8 and 2.0 didn't satisfied in 730 days.

  • PDF

요소·멜라민 수지 접착제의 겔화성 및 접착특성에 미치는 수지조성과 첨가물의 영향 (Effects of Resin Compositions and Additives on Gelation Properties and Bonding Characteristics of Urea-Melamine-Formaldehyde resin adhesives)

  • 노정관
    • Journal of the Korean Wood Science and Technology
    • /
    • 제27권1호
    • /
    • pp.72-78
    • /
    • 1999
  • 요소 멜라민수지의 조성에 의한 속경화의 가능성, 경화촉진제의 첨가에 의한 경화촉진 효과 및 접착성능에 대하여 검토하였다. 수지조성과 동시반응에 의해 제조한 UMF 수지의 겔화성과의 관계는 요소(멜라민/요소 몰비=0.2)에 대한 포롬알데히드의 몰비가 증가할수록 겔화시간이 빨라졌다. 그러나, 요소에 대한 포름알데히드의 몰비가 2.5이상에서는 수지중의 유리포름알데히드량이 KS기준에 합격하지 못하므로 속경화를 위해 수지 합성시 포름알데히드의 첨가량을 높이는 것은 어려울 것으로 생각된다. 또한, 요소에 대한 포름알데히드의 몰비를 3.4로 고정한 UMF수지에 있어서 요소에 대한 멜라민의 몰비가 0.3에서 0.6으로 증가할 수록 수지의 겔화시간은 다소 단축되었으나, 0.6이상에서는 다시 증가하였다. UMF수지의 겔화성과 접착강도는 경화제로서 염화암모늄과 p-툴루맨설폰산, 증량제로서 소액분과 콘글루텐의 병용에 의해 크게 향상되었다.

  • PDF

Influence of Initial Molar Ratios on the Performance of Low Molar Ratio Urea-Formaldehyde Resin Adhesives

  • LUBIS, Muhammad Adly Rahandi;PARK, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권2호
    • /
    • pp.136-153
    • /
    • 2020
  • In this paper, the influence of initial formaldehyde/urea (F/U) molar ratios on the performance of low molar ratio (1.0) urea-formaldehyde (UF) resin adhesives has been investigated. Two initial F/U molar ratios, i.e., the first and second initial molar ratios were used for the alkaline addition reaction. Three levels of the first initial F/U molar ratios (2.0, 3.0, and 4.0) and two levels of the second initial molar ratios (2.0 and 1.7) were employed to prepare a total of six UF resins with an identical final molar ratio (1.0). The basis properties, functional groups, molecular weight, crystallinity, and thermal curing properties of the UF resins were characterized in detail. Higher levels (3.0 and 4.0) of the first initial F/U molar ratio provided the UF resins with better properties (non-volatile solids content, viscosity, gelation time, pH, and specific gravity) than those of the resins prepared with the conventional level F/U molar ratio of 2.0. Statistical analysis suggested that combining the first and second initial molar ratio of 4.0 with 1.7 would result in UF resins with greater adhesion strength and lower formaldehyde emission than those of the resins prepared with other molar ratios. The results showed that higher levels of the first initial molar ratio resulted in a more branched structure, as indicated by GPC, FTIR, DSC, XRD, and greater adhesion strength than those of the other UF resins with an identical final molar ratio of 1.0.

Simultaneous Improvement of Formaldehyde Emission and Adhesion of Medium-Density Fiberboard Bonded with Low-Molar Ratio Urea-Formaldehyde Resins Modified with Nanoclay

  • WIBOWO, Eko Setio;LUBIS, Muhammad Adly Rahandi;PARK, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권5호
    • /
    • pp.453-461
    • /
    • 2021
  • In wood-based composite panels, low-molar ratio (LMR) urea-formaldehyde (UF) resins usually result in reduced formaldehyde emission (FE) at the expense of poor adhesion. However, the FE and adhesion of medium-density fiberboard (MDF) bonded with LMR UF resins were both improved in this study. The modified LMR UF resins with transition metal ion-modified bentonite (TMI-BNT) nanoclay simultaneously improved the FE and adhesion of MDF panels. The modified LMR UF resins with 5% TMI-BNT resulted in a 37.1% FE reduction and 102.6% increase in the internal bonding (IB) strength of MDF panels. Furthermore, thickness swelling and water absorption also significantly decreased to 13.0% and 24.9%, respectively. These results imply that TMI-BNT modification of LMR UF resins could enhance the formation of a three-dimensional network rather than crystalline domains, resulting in improved cohesion.

Adhesion Properties of Urea-Melamine-Formaldehyde (UMF) Resin with Different Molar Ratios in Bonding High and Low Moisture Content Veneers

  • Xu, Guang-Zhu;Eom, Young-Geun;Lim, Dong-Hyuk;Lee, Byoung-Ho;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제38권2호
    • /
    • pp.117-123
    • /
    • 2010
  • The objective of this research was executed to investigate the effect of molar ratio of formaldehyde to urea and melamine (F/(U+M)) of urea-melamine-formaldehyde (UMF) resin on bonding high and low moisture content veneers. For that purpose, UMF resin types with 5 different F/(U+M) molar ratios (1.45, 1.65, 1.85, 2.05, and 2.25) synthesized were used in present study. First, their curing behavior was evaluated by differential scanning calorimetry. Second, their adhesion performance in bonding high and low moisture content veneers was evaluated by probe tack and dry and wet shear strength tests. Curing temperature and reaction enthalpy decreased with the increase of F/(U+M) molar ratio. And the dry and wet shear strengthsof plywood manufactured from low moisture content veneers were higher than thoseof plywood manufactured from high moisture content veneers. Also, the maximum initial tack force on the low moisture content veneer was higher than that on the high moisture content veneer.

Crystallinity of Low Molar Ratio Urea-Formaldehyde Resins Modified with Cellulose Nanomaterials

  • PARK, Seongsu;PARK, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권2호
    • /
    • pp.169-180
    • /
    • 2021
  • Inherent crystalline domains present in low formaldehyde to urea (F/U) molar ratio urea-formaldehyde (UF) resins are responsible for their poor adhesion in wood-based composite panels. To modify the crystallinity of low molar ratio (LMR) UF resins, this study investigates the additional effect of cellulose nanomaterials (CNMs), such as cellulose microfibrils (CMFs), cellulose nanofibrils (CNFs), and TEMPO-oxidized CNFs (TEMPO-CNFs) on the crystallinity of modified LMR UF resins. First, two modification methods (post-mixing and in situ) were compared for modified LMR UF resins with TEMPO-CNFs. The modified UF resins with TEMPO-CNFs decreased the nonvolatile solid contents, while increasing the viscosity and gel time. However, the in situ modification of UF resins with TEMPO-CNFs showed lower crystallinity than that of post-mixing. Then, the in situ method was compared for all CNMs to modify LMR UF resins. The modified UF resins with CMFs using the in situ method increased nonvolatile solid contents and viscosity but decreased the gel time. The crystallinity of UF resins modified with TEMPO-CNFs was the lowest even though the crystalline domains were not significantly changed for all modified UF resins. These results suggest that these CNMs should be modified to prevent the formation of crystalline domains in LMR UF resins.

Synchrotron X-Ray Diffraction Studies on Crystalline Domains in Urea-Formaldehyde Resins at Low Molar Ratio

  • WIBOWO, Eko Setio;PARK, Byung-Dae;CAUSIN, Valerio;HAHN, Dongyup
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권5호
    • /
    • pp.353-364
    • /
    • 2022
  • The crystalline domain of thermosetting urea-formaldehyde (UF) resins at low formaldehyde-to-urea (F/U) molar ratios (≤ 1.0) is known to be responsible for their poor performance as wood adhesives. Crystallization has been observed in 1.0 F/U UF resins during the addition reaction stage and at the end of the synthesis process (neat UF resins). The crystallinity and X-ray diffraction (XRD) spectra of the uncured neat UF resins, on the other hand, differed significantly from those of the cured neat UF resins, raising the possibility that their crystal structures were also different. This study demonstrates for the first time that the crystalline domains in 1.0 F/U UF resins generated from uncured and cured samples are identical. Despite having a lower crystallinity value, the synchrotron XRD patterns of purified neat UF resins were equivalent to the XRD patterns of cured neat UF resins. Transmission electron microscope images of the cured UF resins showed that the crystals were lamellar structures. This finding suggests that the crystal at low molar ratio UF resins are isotropic polycrystals with random orientation.