Browse > Article
http://dx.doi.org/10.5658/WOOD.2021.49.5.453

Simultaneous Improvement of Formaldehyde Emission and Adhesion of Medium-Density Fiberboard Bonded with Low-Molar Ratio Urea-Formaldehyde Resins Modified with Nanoclay  

WIBOWO, Eko Setio (Department of Wood and Paper Science, Kyungpook National University)
LUBIS, Muhammad Adly Rahandi (Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI))
PARK, Byung-Dae (Department of Wood and Paper Science, Kyungpook National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.49, no.5, 2021 , pp. 453-461 More about this Journal
Abstract
In wood-based composite panels, low-molar ratio (LMR) urea-formaldehyde (UF) resins usually result in reduced formaldehyde emission (FE) at the expense of poor adhesion. However, the FE and adhesion of medium-density fiberboard (MDF) bonded with LMR UF resins were both improved in this study. The modified LMR UF resins with transition metal ion-modified bentonite (TMI-BNT) nanoclay simultaneously improved the FE and adhesion of MDF panels. The modified LMR UF resins with 5% TMI-BNT resulted in a 37.1% FE reduction and 102.6% increase in the internal bonding (IB) strength of MDF panels. Furthermore, thickness swelling and water absorption also significantly decreased to 13.0% and 24.9%, respectively. These results imply that TMI-BNT modification of LMR UF resins could enhance the formation of a three-dimensional network rather than crystalline domains, resulting in improved cohesion.
Keywords
formaldehyde emission; low-molar ratio; urea-formaldehyde resins; medium-density fiberboard; nanoclay;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Han, H.J., Lee, S.E., Yang, S.M., Choi, C., Kang, S.G. 2019. Evaluation of formaldehyde emission from wood-based panels using accelerated collection method. Journal of the Korean Wood Science and Technology 47(2): 129-144.   DOI
2 Lubis, M.A.R., Jeong, B., Park, B.D., Lee, S.M., Kang, E.C. 2019a. Effect of synthesis method and melamine content of melamine-urea-formaldehyde resins on bond-line features in plywood. Journal of the Korean Wood Science and Technology 47(5): 579-586.   DOI
3 Lubis, M.A.R., Park, B.D. 2020a. Influence of initial molar ratios on the performance of low molar ratio urea-formaldehyde resin adhesives. Journal of the Korean Wood Science and Technology 48(2): 136-153.   DOI
4 Wibowo, E.S., Park, B. 2020. Enhancing adhesion of thermosetting urea-formaldehyde resins by preventing the formation of H-bonds with multi-reactive melamine. Journal of Adhesion. https://doi.org/10.1080/00218464.2020.1830069   DOI
5 Lubis, M.A.R., Park, B.D., Hong, M.K. 2020. Tuning of adhesion and disintegration of oxidized starch adhesives for the recycling of medium density fiberboard. BioResources 15(3): 5156-5178.   DOI
6 Lubis, M.A.R., Park, B.D., Lee, S.M. 2019b. Performance of hybrid adhesives of blocked-pMDI/melamine-urea-formaldehyde resins for the surface lamination on plywood. Journal of the Korean Wood Science and Technology 47(2): 200-209.   DOI
7 Meyer, B., Hermanns, K., Smith, D.C. 1985. Formaldehyde release from urea-formaldehyde bonded wood products. Journal of Adhesion 17(4): 297-308.   DOI
8 Myers, G. 1984. How mole ratio of UF resin affects formaldehyde emission and other properties: A literature critique. Forest Products Journal 34(5): 34-41.
9 Park, B.-D., Jeong, H.-W. 2011. Hydrolytic stability and crystallinity of cured urea-formaldehyde resin adhesives with different formaldehyde/urea mole ratios. International Journal of Adhesion and Adhesives 31(6): 524-529.   DOI
10 Park, S., Park, B.-D. 2021. Crystallinity of low molar ratio urea-formaldehyde resins modified with cellulose nanomaterials. Journal of the Korean Wood Science and Technology 49(2):169-180.   DOI
11 Salari, A., Tabarsa, T., Khazaeian, A., Saraeian, A. 2012. Effect of nanoclay on some applied properties of oriented strand board (OSB) made from underutilized low quality paulownia (Paulownia fortunei) wood. Journal of Wood Science. 58(6): 513-524.   DOI
12 Dunky, M. 1998. Urea-formaldehyde (UF) adhesive resins for wood. International Journal of Adhesion and Adhesives 18(2): 95-107.   DOI
13 Cademartori, P.H.G., de, Artner, M.A., Alves de Freitas, R., Magalhaes, W.L.E. 2019. Alumina nanoparticles as formaldehyde scavenger for urea-formaldehyde resin: Rheological and in-situ cure performance. Compososite Part B Engineering 176. https://doi.org/10.1016/j.compositesb.2019.107281   DOI
14 Copur, Y., Guler, C., Tascioglu, C., Tozluoglu, A. 2008. Incorporation of hazelnut shell and husk in MDF production. Bioresource Technology 99(15): 7402-7406.   DOI
15 Dunker, A.K., John, W.E., Rammon, R., Farmer, B., Johns, S.J. 1986. Slightly bizarre protein chemistry: Urea-formaldehyde resin from a biochemical perspective. Journal of Adhesion 19(2): 153-176.   DOI
16 Hong, M.-K., Lubis, M.A.R., Park, B.-D., Sohn, C.H., Roh, J. 2020. Effects of surface laminate type and recycled fiber content on properties of three-layer medium density fiberboard. Wood Material Science & Engineering 15(3): 163-171.   DOI
17 Hong, M.K., Lubis, M.A.R., Park, B.D. 2017. Effect of panel density and resin content on properties of medium density fiberboard. Journal of the Korean Wood Science and Technology 45(4): 444-455.   DOI
18 Stuligross, J., Koutsky, J.A. 1985. A Morphological study of urea-formaldehyde resins. Journal of Adhesion 18(4): 281-299.   DOI
19 Sun, Q.N., Hse, C.Y., Shupe, T.F. 2014. Effect of different catalysts on urea-formaldehyde resin synthesis. Journal of Applied Polymer Science 131(16): 1-7.
20 Thoemen, H., Irle, M., Sernek, M. 2010. Wood-Based panels: An introduction for specialist. Brunel University Press, London. England, pp. 1-94.
21 Wibowo, E.S., Park, B.-D., Causin, V. 2020b. Hydrogen-Bond-Induced crystallization in low-molar-ratio urea-formaldehyde resins during synthesis. Industrial & Engineering Chemistry Research 59(29): 13095-13104.   DOI
22 Vico, L.I. 2003. Acid-base behaviour and Cu2+ and Zn2+ complexation properties of the sepiolite/water interface. Chemical Geology 198(3-4): 213-222.   DOI
23 Wen, M.Y., Zhu, J.Z., Zhu, M., Sun, Y.X., Park, H.J., Shi, J. 2020. Research on flame retardant formaldehyde-free plywood glued by aqueous polymer isocyanate adhesive1. Journal of the Korean Wood Science and Technology 48(5): 755-764.   DOI
24 Wibowo, E.S., Lubis, M.A.R., Park, B.-D., Kim, J.S., Causin, V. 2020a. Converting crystalline thermosetting urea-formaldehyde resins to amorphous polymer using modified nanoclay. Journal of Industrial Engineering Chemistry 87: 78-89.   DOI
25 Wibowo, E.S., Park, B. 2021. Crystalline lamellar structure of thermosetting urea-formaldehyde resins at a low molar ratio. Macromolecules 54(5): 2366-2375.   DOI
26 Pizzi, A., Valenzuela, J. 1994. Theory and practice of the preparation of low formaldehyde emission uf adhesives. Holzforschung 48(3): 254-261. https://doi.org/10.1515/hfsg.1994.48.3.254   DOI
27 KS F3200, 2016. "Fiberboards," Korean Standards Association, Seoul, Republic of Korea.
28 Levendis, D., Pizzi, A., Ferg, E. 1992. The Correlation of Streng th and Formaldehyde Emission with the Crystalline/Amorphous Structure of UF Resins. Holzforschung 46(3): 263-269.   DOI
29 Jeong, B., Park, B.D. 2019. Performance of urea-formaldehyde resins synthesized at two different low molar ratios with different numbers of urea addition. Journal of the Korean Wood Science and Technology 47(2): 221-228.   DOI
30 Lei, H., Du, G., Pizzi, A., Celzard, A. 2008. Influence of nanoclay on urea-formaldehyde resins for wood adhesives and its model. Journal of Applied Polymer Science 109(4): 2442-2451.   DOI
31 Lubis, M.A.R., Hong, M.K., Park, B.D., Lee, S.M. 2018. Effects of recycled fiber content on the properties of medium density fiberboard. European Journal of Wood and Wood Products 76(5): 1515-1526.   DOI
32 Park, B.D., Kang, E.C., Park, J.Y. 2006. Effects of formaldehyde to urea mole ratio on thermal curing behavior of urea-formaldehyde resin and properties of particleboard. Journal of Applied Polymer Science 101(3): 1787-1792.   DOI
33 Xing, C., Zhang, S.Y., Deng, J., Riedl, B., Cloutier, A. 2006. Medium-density fiberboard performance as affected by wood fiber acidity, bulk density, and size distribution. Wood Science and Technology 40(8): 637-646.   DOI
34 Jeong, B., Park, B.D., Causin, V. 2020. Effects of storage time on molecular weights and properties of melamine-urea-formaldehyde resins. Journal of the Korean Wood Science and Technology 48(3): 291-302.   DOI
35 Lubis, M.A.R., Park, B.D. 2020b. Enhancing the performance of low molar ratio urea-formaldehyde resin adhesives via in-situ modification with intercalated nanoclay. Journal of Adhesion. https://doi.org/10.1080/00218464.2020.1753515   DOI