• 제목/요약/키워드: Formability

검색결과 900건 처리시간 0.028초

스포츠 웨어용 흡한속건 및 투습방수 소재의 의류외관 특성과 형성성능 (Garment Appearance and Formability of Perspiration Absorption and Fast Dry/breathable Fabrics for Sports Wear)

  • 김현아
    • 한국의류산업학회지
    • /
    • 제21권5호
    • /
    • pp.597-605
    • /
    • 2019
  • This paper examined the garment formability and appearance of perspiration absorption, fast dry, and breathable fabrics. The mechanical properties and seam pucker properties of these fabrics were measured and regression analysis was conducted between fabric structural parameters and their mechanical and seam pucker properties. The superior total appearance value (TAV) of fast dry knitted fabrics for sports-wear was achieved in fabrics with high extensibility and bending rigidity; consequently, it increased with increasing stitch density and tightness factor. The formability of the fast dry knitted fabric also improved with an increasing stitch density and tightness factor. The seam pucker was influenced by bending rigidity and a good seam pucker was exhibited in the fast dry knitted fabrics with low stitch density and tightness factor. However, the formability (F) of the breathable fabric improved by increasing extensibility and bending rigidity that decreased with an increasing cover factor and the thickness of the breathable fabric. In addition, seam pucker deteriorated with an increasing cover factor and the thickness of the breathable fabric, which was similar to the results of the formability predicted in fabric mechanical properties. A superior seam pucker was achieved in fabrics with high extensibility and low bending rigidity.

습·건열 열고정 조건이 스트레치 직물의 역학특성과 의류형성성능에 미치는 영향 (Effect of Wet and Dry Thermal Setting Conditions of Stretch Fabric to Fabric Mechanical Property and Garment Formability)

  • 김현아;김승진
    • 한국의류산업학회지
    • /
    • 제20권1호
    • /
    • pp.83-92
    • /
    • 2018
  • This paper investigated garment formability and fabric mechanical properties of one-way and two-way stretch fabrics according to the thermal treatment methods. One-way and two-way stretch fabrics were woven using 75d and 150d PET/spandex covering yarns and then these were wet thermal treated with four kinds of finishing machines. The fabric mechanical properties of these stretch fabrics specimens were measured and compared with the regular PET fabrics. The stretch ratio of one-way stretch fabric was ranged 12 to 26 percentage, 15 to 45 percentage for 2-way stretch fabrics and 4 to 10 percentage for regular fabrics. Garment formability of stretch fabric was superior than that of regular fabrics, in addition, 2-way stretch fabric was better than one-way. The garment formability of the stretch fabrics treated with CPB and Lava wet thermal machines showed the highest values, and the stretch ratio of these 2-way stretch fabrics was also the highest, which was ranged 20 to 45 percentage. This phenomenon was assumed to be due to high extensibility and bending rigidity with low shear modulus of the 2-way stretch fabric treated with CPB and Lava wet thermal machines. It was shown that the garment formability of stretch fabrics treated without dry thermal treatment was higher than that of dry thermal treated fabrics. It revealed that high stretch fabric was available under the condition of low process tension in the wet and dry thermal treatments of the finishing process, which makes high garment formability.

신선 가공된 이상 조직강의 냉간 성형성에 대한 연구 (Study on the Cold Formability of Drawn Dual-Phase Steels)

  • 박경수;최상우;이덕락;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.269-273
    • /
    • 2003
  • There is a growing interest to replace the commercial steels with non-heat treated steels, which does not involve the spheroidization and quenching-tempering treatment. However, Non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, Dual-Phase Steels were studied as candidate materials for non-heat treated steels, which have different martensite morphologies and volume fractions obtained through heat-treatment of intercritical quenching (IcQ), intermediate quenching (ImQ) and step quenching (SQ). The mechanical properties of DP steels were measured by tension and compression tests. Also, the cold formability of three DP steels which have similar tensile strength value was investigated by estimating the deformation resistance and the forming limit. The deformation resistance which is important factor in determining die life was estimated by calculating the deformation energy. And the forming limit was estimated by measuring the critical strain revealing crack initiation at the notch tip of the specimens.

  • PDF

열전지 음극재용 Li-Si 원료의 성형성에 미치는 입자크기와 바인더첨가 효과 (Effects of Particle Size and Binder Phase Addition on Formability of Li-Si Alloy Powder for Thermal Battery Anode)

  • 류성수;김희식;김성원;김형태;정해원;이성민
    • 한국분말재료학회지
    • /
    • 제21권5호
    • /
    • pp.331-337
    • /
    • 2014
  • The effects of particle size of Li-Si alloy and LiCl-KCl addition as a binder phase for raw material of anode were investigated on the formability of the thermal battery anode. The formability was evaluated with respect to filling density, tap density, compaction density, spring-back and compressive strength. With increasing particle size of Li-Si alloy powder, densities increased while spring-back and compressive strength decreased. Since the small spring-back is beneficial to avoiding breakage of pressed compacts, larger particles might be more suitable for anode forming. The increasing amount of LiCl-KCl binder phase contributed to reducing spring-back, improving the formability of anode powder too. The control of particle size also seems to be helpful to get double pressed pellets, which consisted of two layer of anode and electrolyte.

알루미늄 판재의 성형성 향상을 위한 적외선 국부 열처리법의 곡선형태 적용에 관한 연구 (A Study on the Infrared Local Heat Treatment of Curved Line for Aluminum Alloy Sheet)

  • 이은호;양동열
    • 소성∙가공
    • /
    • 제27권2호
    • /
    • pp.87-92
    • /
    • 2018
  • Auto industries have tried to employ lightweight alloys to improve the fuel efficiency of manufactured vehicles, as the environmental concern becomes an important issue. Even though the aluminum alloy is one of the most appropriate lightweight alloys for auto parts, the low formability of an aluminum alloy has been an obstacle to its application. In order to resolve the low formability problem, a recent study (Lee et al., 2017 [1]) showed that the infrared (IR) local heat treatment can improve the formability with a reduction of heating energy. However, the aforementioned study was limited to only a linear line heating. Since many of the available auto parts as applicable to vehicle manufacturing have a curved line shape, the heating experiments for a curved line should be studied. The possibility of building IR lamps having complex shapes is an advantage of the IR lamp, since it can control the heating shape. This work conducted the IR local heat treatment for the curved line. The experimental results show that the IR local heat treatment can improve the formability of the aluminum alloy for curved line. Additionally, it is shown that the IR local heat treatment also reduces the heating energy when it is compared with the furnace heating which heats a blank as a whole. A numerical simulation with a stress-based forming limit diagram also supports the experimental results.

결함을 가지는 모델을 이용한 허브 홀 확장에서의 파단 예측 (Prediction of fracture in hub-hole expansion with a defected-edge model)

  • 이종섭;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.131-134
    • /
    • 2004
  • The hub hole is usually formed with a stretch flanging process followed by a blanking process of a hole. Since the hole is made by blanking, the blanked surface is so rough that the formability in the region is rather poor. The emerging task is to identify the formability of the blanked region in the forming simulation and to relate the criterion to the real forming process by experiments. In this paper, the blanked region of a hole surface is modeled by a defected-edge finite element for stretch flanging simulation. The analysis deals with the level of defect in the blanked region in order to identify the formability in the real process. The analysis provides the formability depending on the level of defect and seeks the way to match the level of defect to that of the real surface. The approach makes the analysis possible to deal with the formability of the high strength steel and predict the fracture at the hole surface during the stretch flanging simulation.

  • PDF

Mg AZ31B 판재의 기계적 특성과 성형성 분석 (A Study on the Mechanical Properties and Formability of Mg AZ31B Sheet)

  • 이규현;윤태욱;강창룡
    • 소성∙가공
    • /
    • 제23권8호
    • /
    • pp.495-500
    • /
    • 2014
  • Magnesium alloys are currently expected to be widely used for weight reduction of cars and as high efficient materials in the automotive and electronics industries. Although the specific strength of magnesium is excellent, it cannot be easily formed at room temperature due to its HCP structure. However in order to improve the formability of magnesium, it is necessary to investigate its formability in the warm temperature range. In the current study, the aim was to add to the magnesium property database so that the mass production of a magnesium car body can be accomplished. Warm tensile tests were conducted and the forming limit diagram was determined to confirm formability characteristics of magnesium AZ31B alloy sheet. In addition the bending formability and the magnesium damping capacity were evaluated for AZ31B and compared to SPRC440E which is a sheet steel used for car bodies.

자기 강화형 폴리프로필렌을 이용한 섬유 금속 적층판의 성형성에 관한 수치해석적 연구 (Numerical Study of the Formability of Fiber Metal Laminates Based on Self-reinforced Polypropylene)

  • 이병언;김정;강범수;송우진
    • 소성∙가공
    • /
    • 제22권3호
    • /
    • pp.150-157
    • /
    • 2013
  • Fiber metal laminates (FMLs) are layered materials comprised of thin metal sheets and fiber reinforced plastic (FRP). This paper presents the numerical study of the formability enhancement of FMLs composed of an aluminum alloy and self-reinforced polypropylene (SRPP) composite. In this study, a numerical simulation based on finite element (FE) modeling is proposed to evaluate the formability of FMLs using ABAQUS/Explicit. The FE model, which included a single layer of solid and shell elements to model the blank, used discrete layers of the solid element with a contact model and shell elements with a friction based model for the aluminum alloy-composite interface conditions. This method allowed the description of each layer of FMLs and was able to simulate the interaction between the layers. It is noted through this research that the proposed numerical simulation described properly the formability enhancement of the FMLs and the simulation results showed good agreement with experimental results.

신선 가공된 이상 조직강의 냉간 성형성에 대한 연구 (A Study on the Cold Formability of Drawn Dual-Phase Steels)

  • 박경수;최상우;이덕락;이종수
    • 소성∙가공
    • /
    • 제13권1호
    • /
    • pp.84-89
    • /
    • 2004
  • There is a growing interest to replace the commercial steels with non-heat treated steels, which does not involve the spheroidization and quenching-tempering treatment. However, Non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, Dual-Phase Steels were studied as candidate materials for non-heat treated steels, which have different martensite morphologies and volume fractions obtained through heat-treatment of intercritical quenching (IcQ), intermediate quenching (ImQ) and step quenching (SQ). The mechanical properties of DP steels were measured by tension and compression tests. Also, the cold formability of three DP steels which have similar tensile strength value was investigated by estimating the deformation resistance and the forming limit. The deformation resistance which is important factor in determining die life was estimated by calculating the deformation energy. And the forming limit was estimated by measuring the critical strain revealing crack initiation at the notch tip of the specimens.

Fabric 형태에 따른 열가소성수지 적층복합재료의 성형성 (Formability of Thermoplastic Laminar Composite depending on the Types of- Fabric)

  • 신익재;이동주
    • 대한기계학회논문집A
    • /
    • 제27권8호
    • /
    • pp.1338-1346
    • /
    • 2003
  • Three-dimensional formability of the thermoplastic laminar composite was studied according to manufacturing conditions. Five different types of the plain weave fabric were used as reinforcement with PET matrix. The square blank was made by press consolidation technique and formed in the type hemisphere. B-factor defined as the ratio of width of yarn and distance between yarns was used as the factor of formability in the type of plain weave fabric. The formability of PET/Glass fabric laminar composite was estimated in terms of forming rate and B-factor with the thickness distribution, area ratio of blank, and intra-ply shear angle. The thickness distribution across hemisphere was strongly affected by the B-factor, forming rate and blank thickness. The area ratio of blank was increased with B-factor, forming rate and blank thickness. Also, it was found that the intra-ply shear angle depends on the B-factor and forming rate.