• Title/Summary/Keyword: Forkhead

Search Result 71, Processing Time 0.022 seconds

Ethanol Extract of Schisandra chinensis (Turcz.) Baill. Reduces AICAR-induced Muscle Atrophy in C2C12 Myotubes (마우스 C2C12 근관세포에서 AICAR로 유도된 근위축에 미치는 오미자 추출물의 영향)

  • Kang, Young-Soon;Park, Cheol;Han, Min-Ho;Hong, Su-Hyun;Hwang, Hye-Jin;Kim, Byung Woo;Kim, Cheol Min;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.293-298
    • /
    • 2015
  • Muscle atrophy, known as a sarcopenia, is defined as a loss of muscle mass resulting from a reduction in the muscle fiber area or density due to a decrease in muscle protein synthesis and an increase in protein breakdown. Schisandrae fructus (SF) extract of the fruits of Schisandra chinensis (Turcz) Baillon has been used as a tonic in traditional medicine for thousands of years. Although a great deal of work has been carried out on the therapeutic potential of SF, its pharmacological mechanisms of action in muscle diseases actions remain unclear. In the present study, we investigated the inhibitory effects of SF ethanol extracts on the production of muscle atrophy factors in C2C12 myotubes stimulated with 5-aminoimidazole-4-carboxamide-ribonucleotide (AICAR), an AMP-activated kinase (AMPK) activator, and sought to determine the underlying mechanisms of action. AICAR upregulated atrophy-related ubiquitin ligase muscle RING finger-1 (MuRF-1) and stimulated the levels of the forkhead box O3a (FoxO3a) transcription factor in the C2C12 myotubes. SF supplementation effectively and concentration- dependently counteracted AICAR-induced muscle cell atrophy and reversed the increased expression of MuRF-1 and FoxO3a. Our study demonstrates that SF can reverse the muscle cell atrophy caused by AICAR through regulation of the AMPK and FoxO3a signaling pathways, followed by inhibition of MuRF-1.

Differential Activities of FOXL2 and Its Mutants on SF-1-Induced CYP19 Transcriptional Activation (SF-1을 매개한 CYP19의 전사활성에 미치는 FOXL2 야생형과 돌연변이형의 차별적 영향)

  • Park, Mi-Ra;Kim, Ah-Young;Na, Soon-Young;Kim, Hong-Man;Lee, Kang-Seok;Bae, Jee-Hyeon;Ko, Jeong-Jae
    • Development and Reproduction
    • /
    • v.14 no.2
    • /
    • pp.91-97
    • /
    • 2010
  • FOXL2 is a winged-helix/forkhead (FH) domain transcription factor, and mutations in FOXL2 gene are responsible for blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). BPES is an autosomal dominant genetic disease. BPES type I patients exhibit both premature ovarian failure (POF) and eyelid malformation, while only the eyelid defect is observed in BPES type II. FOXL2-null ovaries showed a blockage of granulosa cell differentiation, suggesting that FOXL2 plays an essential role for proper ovarian folliculogenesis. Previously, we screened for FOXL2-interacting proteins and identified steroidogenic factor-1 (SF-1) which is known to be required for gonad development and transactivates steroidogenic enzymes including CYP19. In the present study, we demonstrated that FOXL2 transactivates CYP19 and stimulated the transcriptional activation of CYP19 induced by SF-1. In contrast, FOXL2 mutants found in BPES type I and II exhibited compromised abilities to enhance CYP19 induction mediated by SF-1. Thus, this study provides a functional difference between wild-type FOXL2 and its mutants which may aid to understand pathophysiology of BPES elicited by FOXL2 mutations.

Expression of Transcription Factor FOXC2 in Cervical Cancer and Effects of Silencing on Cervical Cancer Cell Proliferation

  • Zheng, Chun-Hua;Quan, Yuan;Li, Yi-Yang;Deng, Wei-Guo;Shao, Wen-Jing;Fu, Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1589-1595
    • /
    • 2014
  • Objective: Forkhead box C2 (FOXC2) is a member of the winged helix/forkhead box (Fox) family of transcription factors. It has been suggested to regulate tumor vasculature, growth, invasion and metastasis, although it has not been studied in cervical cancer. Here, we analyzed FOXC2 expression in cervical tissues corresponding to different stages of cervical cancer development and examined its correlation with clinicopathological characteristics. In addition, we examined the effects of targeting FOXC2 on the biological behavior of human cervical cancer cells. Methods: The expression of FOXC2 in normal human cervix, CIN I-III and cervical cancer was examined by immunohistochemistry and compared among the three groups and between cervical cancers with different pathological subtypes. Endogenous expression of FOXC2 was transiently knocked down in human Hela and SiHa cervical cells by siRNA, and cell viability and migration were examined by scratch and CCK8 assays, respectively. Results: In normal cervical tissue the frequency of positive staining was 25% (10/40 cases), with a staining intensity (PI) of $0.297{\pm}0.520$, in CIN was 65% (26/40cases), with a PI of $3.00{\pm}3.29$, and in cancer was 91.8% (68/74 cases), with a PI of $5.568 {\pm}3.449$. The frequency was 100% in adenocarcinoma (5/5 cases) and 91.3% in SCCs (63/69 cases). The FOXC2 positive expression rate was 88.5% in patients with cervical SCC stage I and 100% in stage II, showing significant differences compared with normal cervix and CIN. With age, pathologic differentiation degree and tumor size, FOXC2 expression showed no significant variation. On transient transfection of Hela and SiHa cells, FOXC2-siRNA inhibition rates were 76.2% and 75.7%; CCK8 results showed reduced proliferation and relative migration (in Hela cells from $64.5{\pm}3.16$ to $49.5{\pm}9.24$ and in SiHa cells from $60.1{\pm}3.05$ to $44.3{\pm}3.98$) (P < 0.05). Conclusion: FOXC2 gene expression increases with malignancy, especially with blood vessel hyperplasia and invasion degree. Targeted silencing was associated with reduced cell proliferation as well as invasion potential.

Induction of Forkhead Class box O3a and apoptosis by a standardized ginsenoside formulation, KG-135, is potentiated by autophagy blockade in A549 human lung cancer cells

  • Yao, Chih-Jung;Chow, Jyh-Ming;Chuang, Shuang-En;Chang, Chia-Lun;Yan, Ming-De;Lee, Hsin-Lun;Lai, I-Chun;Lin, Pei-Chun;Lai, Gi-Ming
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.247-256
    • /
    • 2017
  • Background: KG-135, a standardized formulation enriched with Rk1, Rg3, and Rg5 ginsenosides, has been shown to inhibit various types of cancer cells; however, the underlying mechanisms are not fully understood. In this study, we explored its effects in A549 human lung cancer cells to investigate the induction of Forkhead Class box O3a (FOXO3a) and autophagy. Methods: Cell viability was determined by sulforhodamine B staining. Apoptosis and cell cycle distribution were analyzed using flow cytometry. The changes of protein levels were determined using Western blot analysis. Autophagy induction was monitored by the formation of acidic vesicular organelles stained with acridine orange. Results: KG-135 effectively arrested the cells in G1 phase with limited apoptosis. Accordingly, a decrease of cyclin-dependent kinase-4, cyclin-dependent kinase-6, cyclin D1, and phospho-retinoblastoma protein, and an increase of p27 and p18 proteins were observed. Intriguingly, KG-135 increased the tumor suppressor FOXO3a and induced the accumulation of autophagy hallmark LC3-II and acidic vesicular organelles without an increase of the upstream marker Beclin-1. Unconventionally, the autophagy adaptor protein p62 (sequestosome 1) was increased rather than decreased. Blockade of autophagy by hydroxychloroquine dramatically potentiated KG-135-induced FOXO3a and its downstream (FasL) ligand accompanied by the cleavage of caspase-8. Meanwhile, the decrease of Bcl-2 and survivin, as well as the cleavage of caspase-9, were also drastically enhanced, resulting in massive apoptosis. Conclusion: Besides arresting the cells in G1 phase, KG-135 increased FOXO3a and induced an unconventional autophagy in A549 cells. Both the KG-135-activated extrinsic FOXO3a/FasL/caspase-8 and intrinsic caspase-9 apoptotic pathways were potentiated by blockade of autophagy. Combination of KG-135 and autophagy inhibitor may be a novel strategy as an integrative treatment for cancers.

Human Norovirus Replication in Temperature-Optimized MDCK Cells by Forkhead Box O1 Inhibition

  • Jeong, Eun-Hye;Cho, Se-Young;Vaidya, Bipin;Ha, Sang Hoon;Jun, Sangmi;Ro, Hyun-Joo;Lee, Yujeong;Lee, Juhye;Kwon, Joseph;Kim, Duwoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1412-1419
    • /
    • 2020
  • Human noroviruses (HuNoVs) are a leading cause of gastroenteritis outbreaks worldwide. However, the paucity of appropriate cell culture models for HuNoV replication has prevented developing effective anti-HuNoV therapies. In this study, first, the replication of the virus at various temperatures in different cells was compared, which showed that lowering the culture temperature from 37℃ significantly increased virus replication in Madin-Darby canine kidney (MDCK) cells. Second, the expression levels of autophagy-, immune-, and apoptosis-related genes at 30℃ and 37℃ were compared to explore factors affecting HuNoV replication. HuNoV cultured at 37℃ showed significantly increased autophagy-related genes (ATG5 and ATG7) and immune-related genes (IFNA, IFNB, ISG15, and NFKB) compared to mock. However, the virus cultured at 30℃ showed significantly decreased expression of autophagy-related genes (ATG5 and ATG7), but not significantly different major immune-related genes (IFNA, ISG15, and NFKB) compared to mock. Importantly, expression of the transcription factor FOXO1, which controls autophagy- and immune-related gene expression, was significantly lower at 30℃. Moreover, FOXO1 inhibition in temperature-optimized MDCK cells enhanced HuNoV replication, highlighting FOXO1 inhibition as an approach for successful virus replication. In the temperature-optimized cells, various HuNoV genotypes were successfully replicated, with GI.8 showing the highest replication levels followed by GII.1, GII.3, and GII.4. Furthermore, ultrastructural analysis of the infected cells revealed functional HuNoV replication at low temperature, with increased cellular apoptosis and decreased autophagic vacuoles. In conclusion, temperature-optimized MDCK cells can be used as a convenient culture model for HuNoV replication by inhibiting FOXO1 and providing adaptability to different genotypes.

Comprehensive Expression Analysis Suggests Functional Overlapping of Human FOX Transcription Factors in Cancer

  • Zhang, Ya-Li;Sun, Feng-Ting;Zhang, Ze;Chen, Xiao-Xu;Liu, Ai-Xiang;Pan, Jing-Jing;Peng, Fei;Zhou, Shuai;Sun, Li-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10475-10481
    • /
    • 2015
  • Forkhead-box (FOX) transcription factors comprise a large gene family that contains more than 50 members in man. Extensive studies have revealed that they not only have functions in control of growth and development, but also play important roles in different diseases, especially in cancer. However, biological functions for most of the members in the FOX family remain unknown. In the present study, the expression of 39 FOX genes in 48 kinds of cancer was mined from the Gene Expression Atlas database of European Bioinformatics Institute. The analysis results showed that some FOX genes demonstrate overlapping expression in various cancers, which suggests particular biological functions. The pleiotropic features of the FOX genes make them excellent candidates in efforts aimed to give medical treatment for cancers at the genetic level. The results also indicated that different FOX genes may have the synergy or antagonistics effects in the same cancers. The study provides clues for further functional analysis of FOX genes, especially for the pleiotropic biological functions and crosstalk of FOX genes in human cancers.

FoxO3a mediates transforming growth factor-β1-induced apoptosis in FaO rat hepatoma cells

  • Kim, Byung-Chul
    • BMB Reports
    • /
    • v.41 no.10
    • /
    • pp.728-732
    • /
    • 2008
  • FoxO3a is a member of the forkhead box class O (FoxO) transcription factor family and an important regulator of apoptosis. This work aimed to elucidate the involvement of FoxO3a in transforming growth factor-${\beta}1$(TGF-${\beta}1$)-induced apoptosis in FaO rat hepatoma cells. TGF-${\beta}1$ caused a time-dependent activation of FoxO3a and a subsequent increase in FoxO response-element-containing luciferase reporter activity, which was Akt-sensitive. The FaO cells stably transfected with a wild type FoxO3a were more susceptible to the formation of apoptotic bodies, populations of sub-G1 apoptotic cells, and collapse of the mitochondrial-membrane potential triggered by TGF-${\beta}1$. In contrast, transfection with small-interfering RNA (siRNA) oligonucleotide specific for FoxO3a significantly inhibited caspase activation in FaO cells treated with TGF-${\beta}1$. It thus appears that FoxO3a plays a crucial mediatory role in the TGF-${\beta}1$ signaling pathway leading to apoptosis.

Replication Study of Association between Forkhead Box O3 (FOXO3) Polymorphisms and Tuberculosis in Korean Population

  • Park, Sangjung;Kim, Sung-Soo;Jin, Hyun-Seok;Cho, Jang-Eun
    • Biomedical Science Letters
    • /
    • v.26 no.1
    • /
    • pp.42-46
    • /
    • 2020
  • Tuberculosis (TB) remains a major health problem worldwide. TB depends not only on the characteristics of the Mycobacterium tuberculosis (MTB) but also on the genetic susceptibility of infected patients. Recent studies have suggested that FOXO3 play an important role in the human immune associated disorder, such as TB. It was previously reported that FOXO3 genetic variants associated with a risk of TB in Chinese population. In this study, we confirm whether the genetic polymorphism of the FOXO3 gene, which was previously in Chinese, is reproduced in Korean population. Of the 154 SNPs were extracted from the FOXO3 gene, reproducibility analysis of the four SNPs performed in the previous study showed that there was a statistically significant correlation in the three SNPs (rs4946935, rs1536057, rs3800228). This study suggests that polymorphism of the FOXO3 gene in Koreans may affect the onset of tuberculosis and could be used to treat and prevent tuberculosis.

Mitochondrial metabolism in cancer stem cells: a therapeutic target for colon cancer

  • Song, In-Sung;Jeong, Yu Jeong;Han, Jin
    • BMB Reports
    • /
    • v.48 no.10
    • /
    • pp.539-540
    • /
    • 2015
  • It has been proposed that the selective elimination of cancer stem cells (CSCs) using targeted therapy could greatly reduce tumor growth, recurrence, and metastasis. To develop effective therapeutic targets for CSC elimination, we aimed to define the properties of CSC mitochondria, and identify CSC-mitochondria-specific targets in colon cancer. We found that colon CSCs utilize mitochondrial oxidative phosphorylation (OXPHOS) to produce ATP. We also found that forkhead box protein 1 (FOXM1)-induced peroxiredoxin 3 (PRDX3) maintains the mitochondrial function, and the FOXM1/PRDX3 mitochondrial pathway maintains survival of colon CSCs. Furthermore, FOXM1 induces CD133 (PROM1/prominin 1) expression, which maintains the stemness of colon CSCs. Together, our findings indicate that FOXM1, PRDX3, and CD133 are potential therapeutic targets for the elimination of CSCs in colon cancer.

Sirtuin signaling in cellular senescence and aging

  • Lee, Shin-Hae;Lee, Ji-Hyeon;Lee, Hye-Yeon;Min, Kyung-Jin
    • BMB Reports
    • /
    • v.52 no.1
    • /
    • pp.24-34
    • /
    • 2019
  • Sirtuin is an essential factor that delays cellular senescence and extends the organismal lifespan through the regulation of diverse cellular processes. Suppression of cellular senescence by Sirtuin is mainly mediated through delaying the age-related telomere attrition, sustaining genome integrity and promotion of DNA damage repair. In addition, Sirtuin modulates the organismal lifespan by interacting with several lifespan regulating signaling pathways including insulin/IGF-1 signaling pathway, AMP-activated protein kinase, and forkhead box O. Although still controversial, it is suggested that the prolongevity effect of Sirtuin is dependent with the level of and with the tissue expression of Sirtuin. Since Sirtuin is also believed to mediate the prolongevity effect of calorie restriction, activators of Sirtuin have attracted the attention of researchers to develop therapeutics for age-related diseases. Resveratrol, a phytochemical rich in the skin of red grapes and wine, has been actively investigated to activate Sirtuin activity with consequent beneficial effects on aging. This article reviews the evidences and controversies regarding the roles of Sirtuin on cellular senescence and lifespan extension, and summarizes the activators of Sirtuin including Sirtuin-activating compounds and compounds that increase the cellular level of nicotinamide dinucleotide.