• Title/Summary/Keyword: Forging force

Search Result 53, Processing Time 0.028 seconds

Microstructural Characteristics of Zircaloy-4 Nuclear Fuel Cladding Welds by Resistance Upset Welding Processes (저항 업셋 용접방식에 따른 Zircaloy-4 핵연료 피복재 용접부의 미세조직 특성)

  • 고진현;김상호;박춘호;김수성
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.98-104
    • /
    • 2002
  • A study on microstructures of welds for Zircaloy-4 sheath end closure by the resistance upset welding methods was carried out. Two upset welding process variations such as magnetic farce and multi-impulse resistance welding were used. Grain size and microhardness across welds were analysed in terms of welding parameters. Magnetic farce resistance weld with one cycle of unbalanced mode has smaller upset length and $\alpha-grain$ size in heat affected zone than those of multi-impulse resistance weld because of lower heat input and shorter welding time. Heat affected zone formed by two upset resistance welding variations revealed fine Widmanstatten structure or martensitic ${\alpha}'$ structure due to the high heating rate and foster cooling rate. Magnetic force resistance welds showed recrystallized grains before grain growth, whereas multi-impulse resistance welds showed full grain growth.

A Study on Edge Bridge Minimization of Fine Blanking Process (Fine Blanking의 가장자리 Bridge 최소화 방법에 관한 연구)

  • Kim, Gi-Tea
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.108-113
    • /
    • 2013
  • Industrialization and modernization of the beginning of the IT industry is growing very fast. Since telecommunications industry was developed rapidly, technologies about miniaturization and high-precision of parts have been actively developed to lead information revolution. generally, the entire shear surface of the product applying fine blanking technology must be very precise. Fine blanking is used to save cost by avoiding post-processing of the product. When using press blanking, it spends a lot of money on the production by using many post-processing. Fine blanking typically used in 0.5~18 mm thick steel plate. Because a lot of post-processing cost can be used to process, except for fine blanking. In order to develop components "CHANCE CONTENTS" in the fine blanking process, the purpose of this study is to minimize the edge of the bridge, secured 95% of the material thickness of the shear surface using the 1.6 mm thickness of the material SPCC. Blanking process by introducing after changing thickness through forging process, due to change in vee-rring force and counter force, the experimental amount of depressions and flatness and the shear surface were analyzed.

Applications of Force Balance Method to Several Metal Forming Problems (성형가공문제에 대한 힘 평형법의 응용)

  • 최재찬;김진무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.653-660
    • /
    • 1986
  • Two uppor bound solutions, by the force balance method and by a kinematically admissible velocity field, are compared for the metal forming problems in plane strain. It is concluded that these two approaches always give identical results when the geometrical configurations of the deformation model reman the same. By detailed derivations for plastic bending of a notched bar, closed die forging, compression of a rectangular block, machining with a restricted contact tool and plane strain backward extrusion, the identity of both approaches is verified.

Spot Welding of Aluminum Alloys Using Servogun (서보건을 이용한 알루미늄 합금의 저항 점용접)

  • 임창식;장희석
    • Journal of Welding and Joining
    • /
    • v.22 no.4
    • /
    • pp.43-49
    • /
    • 2004
  • Conventional method for electrode force application in resistance spot welding(RSW) processes is to use pneumatic cylinder. However, due to its inherent problems in pneumatic power system such as compressibility of air and poor transient response characteristics, new electrode force system with servo control are recently introduced in RSW machine. This machine is called “servogun”. The purpose of this study is to evaluate performance of servogun in case of spot welding of aluminum alloy. Aluminum alloy(A5052) sheets are spot welded using pneumatic gun and servogun. Both results are compared by means of macro cross-section etching test and tensile shear strength test. Numerous previous research have reported nugget with many voids and cracks are not uncommon defects in spot welds with aluminum alloy. The experimental results show similar defects in case of pneumatic gun. In contrast, use of servogun considerably reduced generation of voids and cracks. In case of step-wise increased forging force at the end of welding cycle with servogun, crack-free and void-free nuggets have been observed. The performance of servogun has been also verified by series of tensile shear test. Higher strength values have been achieved with servogun in comparison to that of pneumatic gun.

Prediction of Relative Density by Hardness in Compressed Sintered-Metal Powder (경도를 이용한 소결압축금속분말의 상대밀도 예측)

  • 김진영;박종진
    • Transactions of Materials Processing
    • /
    • v.6 no.6
    • /
    • pp.508-516
    • /
    • 1997
  • Forging process on sintered powder metals has been applied to produce automotive parts which require a high level of strength. In those parts, the measurement of relative density is very important because a low relative density density causes deterioration of strength. In the present study, an indentation force equation was proposed by which the result obtained from the hardness measurement is used to evaluate the relative density. This equation was applied to the prediction of the relative density in cylindrical specimens which were first sintered and then forged at the room temperature and at an elevated temperature. The experimental results were compared with predictions with and without consideration of the workhardening effect on the powder.

  • PDF

Study of Production and Material Properties of Micro Screw Using SWCH18A and SUS XM7 Materials (SWCH18A 와 SUS XM7 을 적용한 초소형 나사제작 및 물성분석에 관한 연구)

  • Ra, Seung-Woo;Kim, In-Rak;Hwang, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.1043-1048
    • /
    • 2014
  • As micro screws feature reduced screw lengths and pitches, the resulting clamping force diminishes because of the reduced length of the actual joints. The elements of the clamping force are material, geometry, and friction. We studied the shrinking size of the screw and the methods to improve the clamping force by changing the material. We developed a micro screw using SWCH18A and SUS XM7 materials, and obtained the precision and thickness of the pitch through three-dimensional measurement. We also measured the external resistance of the micro screw by applying the Vicker's hardness test and conducted a break surface analysis using a break torque test and SEM for obtaining the break characteristics.

Friction Welding Process Analysis of Piston Rod in Marine Diesel Engine and Mechanical Properties of Welded Joint (선박 디젤 엔진용 피스톤 로드의 마찰용접 공정해석 용접부 기계적 특성)

  • Jeong, H.S.;Son, C.W.;Oh, J.S.;Choi, S.K.;Cho, J.R.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.236-242
    • /
    • 2011
  • The two objectives of this study were, first, to determine the optimal friction welding process parameters using finite element simulations and, second, to evaluate the mechanical properties of the friction welded zone for large piston rods in marine diesel engines. Since the diameters of the rod and its connecting part are very different, the manufacturing costs using friction welding are reduced compared to those using the forging process of a single piece. Modeling is a generally accepted method to significantly reduce the number of experimental trials needed when determining the optimal parameters. Therefore, because friction welding depends on many process parameters such as axial force, initial rotational speed and energy, amount of upset and working time, finite element simulations were performed. Then, friction welding experiments were carried out with the optimal process parameter conditions resulting from the simulations. The base material used in this investigation was AISI 4140 with a rod outer diameter of 280 mm and an inner diameter of 160 mm. In this study, various investigation methods, including microstructure characterization, hardness measurements and tensile and fatigue testing, were conducted in order to evaluate the mechanical properties of the friction welded zone.

Quality Evaluation of Resistance Spot Welding using Acoustic Emission (음향방출을 이용한 저항 점용접의 용접 품질평가)

  • Jo Dae-Hee;Rhee Zhang-Kyu;Park Sung-Oan;Cho Jin-Ho;Kim Bong-Gag;Woo Chang-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.98-104
    • /
    • 2006
  • In this paper, for the purpose of investigation the acoustic emission(AE) behaviors during resistance spot welding process and tension test of spec steels. As the results present the resistance spot welding method that can get suitable welding qualities or structural integrity estimating method. The resistance spot welding process consists of several stages: set-down of the electrodes; squeeze; current flow; forging; hold time; and lift-off. Various types of AE signals are produced during each of these stages. For tensile-shear test and cross tensile test in resistance spot welded specimens, fracture pa 야 ems are produced: tear fracture; shear fracture; and plug fracture. Tensile-shear specimens strength appeared higher than cross tensile specimens one. In case of tensile-shear specimen happened tear fracture that crack happens in most lower plate. Also, in case of cross tensile specimens, upper plate and lower plate are detached perfect fracture was exposed increases a little as acting force is lower than ordinary welding condition. Therefore, the structure which is combined by resistance spot welding confirmed that welding design must attain so that shear stress may can interact mainly.

Metal Forming Simulation with Emphasis on Metal Flow Lines and its Applications (소성유동선도를 강조한 소성가공 시뮬레이션과 그 적용 사례)

  • Eom, J.G.;Jeong, S.W.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.6
    • /
    • pp.323-327
    • /
    • 2013
  • In this paper, the flow lines as a function of product design as well as the forging process design are explored using typical application examples. The prediction of flow lines using metal forming simulation technology is introduced along with their characterization. Experimental studies have shown that the metal flow lines have a strong influence on the structural rigidity of the final product. In this study we present several typical applications. One example is the case of severely cut metal flow lines during machining, especially in the region where periodic contacting forces are applied. Another example is the case of abnormal distortion of flow lines which can cause too much elongation or hot shortness due to viscous heating in the region of distortion. A third example is the case of a macrosegregation region which needs to be controlled so it is not adjacent to the region where the force is applied in the use of the final component. An example of weight reduction for an automobile component with improved flow lines is also introduced. These typical applications can provide process engineers with the insight in designing automobile or mechanical components as well as in designing the manufacturing methods to produce various parts.

A Study on Development of Pre-heat Treated Steel Head Bolt for Swashplate Type Compressor of Car Air-conditioner (차량용 에어컨 압축기의 선조질강 헤드 볼트 개발에 대한 연구)

  • Kim, Youngshin;Kim, Hokyoum;Hwang, Seungyong;Kim, Youngman
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.588-595
    • /
    • 2016
  • This paper is a study on head bolts that are used in A/C compressors to reduce production cost and solve leak problems on the head bolt seat area that causes massive intermittent malfunctioning during production. In this study, the pre-heat treated steel, which was used as a material in the head bolt, eliminated the heat treatment process after forging. The pre-heat treated steel head bolts, which have 10 % lower tensile strength than the conventional SCM 435 head bolts, were selected after considering the results of creeping rupture properties, axial force, and stress concentration per tensile strength variation. Then, the performance test and the durability test with the A/C compressor that was assembled with the pre-heat treated steel head bolts were performed and verified. Based on the results, the pre-heat treated steel head bolts developed in this study saved 7.3 % in production cost by eliminating the heat treatment process and the logistics process. Furthermore, the leak problem on the head bolt seat area in the A/C compressor was addressed significantly on the mass production assembly line.