• 제목/요약/키워드: Forging die design

검색결과 240건 처리시간 0.028초

신경망을 이용한 열간단조품의 초기 소재 설계 (Design of Initial Billet using the Artificial Neural Network for a Hot Forged Product)

  • Kim, D.J.;Kim, B.M.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제12권11호
    • /
    • pp.118-124
    • /
    • 1995
  • In the paper, we have proposed a new technique to determine the initial billet for the forged products using a function approximation in neural network. A three-layer neural network is used and a back propagation algorithm is employed to train the network. An optimal billet which satisfied the forming limitation, minimum of incomplete filling in the die cavity, load and energy as well as more uniform distribution of effective strain, is determined by applying the ability of function approximation of the neural network. The amount of incomplete filling in the die, load and forming energy as well as effective strain are measured by the rigid-plastic finite element method. This new technique is applied to find the optimal billet size for the axisymmetric rib-web product in hot forging. This would reduce the number of finite element simulation for determining the optimal billet of forging products, further it is usefully adopted to physical modeling for the forging design

  • PDF

신경망을 이용한 열간단조품의 초기 소재 설계 (Design of Initial Billet using the Artificial Neural Network for a Hot Forged Product)

  • 김동진;김벙민;최재찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.198-203
    • /
    • 1995
  • In the paper, we have proposed a new technique to detemine the initial billet for the forged products using a function approximation in neural network. A three-layer neural network is used and a back propagation algorithm is employed totrain the network. An optimal billet which satisfied the forming limitation, minimum of incomplete filling in the die cavity, load and energyas well as more uniform distribution of effective strain, is determined by applying the ability of function approximation of te neural network. The amount of incomplete filling in the die, load and forming energyas well as effective strain are measured by the rigid-plastic finite element method. The new technique is applied tofind the optimal billet size for the axisymmetric rib-web product in hot forging. This would reduce the number of finite element simulation for determing the optimal billet of forging products, further it is usefully adapted to physical modeling for the forging design.

  • PDF

카운터샤프트 기어의 스플라인 치형 정밀성형을 위한 열간단조 공정에 관한 연구 (A Study on Hot Precision Forging Processes for Spline Teethof a Counter Shaft Gear)

  • 김현필;김현수;김용조
    • Design & Manufacturing
    • /
    • 제6권2호
    • /
    • pp.6-11
    • /
    • 2012
  • A counter shaft gear is an important part in the transmission system of vehicle. Its shape is relatively complicated and should meets high strength. Traditionally the counter shaft gear has been manufactured as follows; a spline body is firstly machined for teeth and then attached to the main gear body by frictional welding, and finally is finished by grinding. Therefore it is necessary to develop a new manufacturing technology eliminating both frictional welding and grinding processes. In this study, a new hot forging process was proposed and designed so that the spline body with teeth and main gear body are formed as one body. Finite element simulations and experimental works were peformed for design of forging processes to get the quality final precision-forged product. Consequently the most suitable blocker process could be obtained.

  • PDF

냉간단조용 금형 수명에 미치는 공정 변수의 영향 (Process variables and die life for cold forging)

  • 이영선;최석탁;권용남;임영목;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.215-218
    • /
    • 2005
  • For the production of cold forged parts with near-net-shape attributes, the quality of the tool system is responsible for an essential portion of costs fer the finished components. Therefore, a tool lift is one of the important issues on cold forging industry. There are many complicated variables related with tool life, such as material, heat-treatment, coating, lubricant, process design. In this study, heat-treatment of tool material and lubricant are investigated to improve the tool life. Deep cryogenic treatment of tool steel is very efficient to improve the wear resistance due to the fine carbide. And, friction factor of lubricants for cold forging are measured by the ring compression test. Zinc-Phosphate and $MoS_2$ lubricant is effective to sustain the friction factor under 0.1.

  • PDF

열간공구강 DH32 소재의 열간단조품 개발에 관한 연구 (A Study on Development of Hot Forged Component of Hot Tool Steel DH32)

  • 장진형;김현수;김종현;김현필;김용조
    • Design & Manufacturing
    • /
    • 제6권1호
    • /
    • pp.39-44
    • /
    • 2012
  • Hot tool steel, in general, has not been used as a material in hot forging. However such a hot tool steel is recently applied to forging materials by recent forging technology. DH32 is known as a kind of hot tool steels, which is developed for characteristics of excellent strength and toughness in high temperature. Feasibility of DH32 to hot forging material has been researched to develop the hot forging technology of a plunger used for a large-sized marine fuel pump. Hot compression experimental works were performed to investigate the hot strain characteristic of DH32 and with the experimental results FE simulations were also conducted for the design of forging processes and preform. It is found out through the hot compression experimental works that DH32 has a hot brittleness at more than $1150^{\circ}C$.

  • PDF

수평식 냉간 다단포머에서 예비성형체와 편심하중을 고려한 Shaft의 성형공정설계 (Process Design of Shaft Considering Effect of Preform and Eccentric Load on Cold Forging Product in Multistage Former of Horizontal Type)

  • 박상수;이정민;김병민
    • 소성∙가공
    • /
    • 제14권1호
    • /
    • pp.57-64
    • /
    • 2005
  • This study deals with the cold forging process design for shaft in the main part of automobile motors with rectangular deep groove. In forging process, the accuracy and die lift is very important because it have influence on reduction of the production cost and the increase of the production rate. Therefore, it is necessary to develop the manufacturing process of shaft by cold forging., process variables are the cropped face angle of billet and the eccentric load of punch. The former is derived from cropping test, the latter is occurred by clearance between container and preform. Also, grooved preform select the process variable for decrease in punch deflection. We investigate that a deflection of punch and a deformation of preform to every process variables. Through this investigation, we suggest the optimal preform and process design, expect to be improved the tool life in forging process.

다구찌법을 활용한 헤딩공정설계 최적화 연구 (A study on the cold heading process design optimization by taguchi method)

  • 황준;원진환
    • 한국결정성장학회지
    • /
    • 제33권6호
    • /
    • pp.216-225
    • /
    • 2023
  • 본 연구에서는 냉간 헤딩 공정에서 성형하중과 펀치 금형의 마모 감소를 통한 펀치 수명 증대를 위해 헤딩용 펀치 형상 최적설계를 수행하였다. 기존 생산에 사용되는 냉간 헤딩 펀치와 성형공정에 대한 유한요소해석 시뮬레이션을 통해 성형하중과 유동 특성 분석, 펀치금형에 집중되는 유효응력 및 마모량에 대하여 분석하였으며, 이를 통해 금형 마모와 밀접한 주요 설계인자를 확인하였다. 펀치금형의 최적설계 변수로서는 펀치 금형 포인트각(Point angle), 에지 반경값(Corner radius), 펀치소재재종(die material type), 마찰계수(friction coefficient) 등의 4가지 변수를 대상으로 4인자 3수준 인자 및 변수 수준을 설정하고, 성형해석 시뮬레이션과 다구찌법을 활용하여 설계인자별 영향도를 분석하여 최적의 최적설계 인자를 결정하였다. 본 연구를 통해 얻어진 최적설계변수를 적용하여 냉간 헤딩용 펀치 최적설계 시뮬레이션 결과, 각 펀치에 발생하는 최대유효응력은 최대 8.9 % 감소 효과를, 최대 펀치 마모 깊이는 37 % 감소 효과를, 성형하중은 평균 20% 수준 의 감소효과를 얻을 수 있었다. 현재, 소성 성형제품군이 적용되는 자동차, 건설 플랜트사에서 요구되는 고품질에 대응하면서도 적정 제조원가 절감을 위한 성형성 개선을 위한 성형공정개발 및 금형설계의 최적화가 지속적으로 필요하며, 향후 연구 결과를 현업에 적용하여 제품 성형성 개선 및 금형수명 증대 관리를 위한 기술자료로 활용하고자 한다.

FEM을 이용한 열간금형 수명 향상 (Tool life increase for Hot forging with Finit Element Method)

  • 강종훈;이희방;김주현
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 단조 심포지엄
    • /
    • pp.141-146
    • /
    • 1999
  • In the stage of process design, many factors affecting tool life should be considered. Wear, Damage Accumulation and excessive die Stress are those. Most Engineer think wear and damage accumulation affection deeply to the cold forging dies and wear for the hot forging dies. In this report, the example that wear and stress distribution affect tool life in hot forging together will be introduced and the way to solve that problem using Finite Element Method.

  • PDF

알루미늄 단조 Lower Arm 개발 (Development of Forged Aluminum Lower Arm)

  • 조용기;윤병은
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 제2회 단조심포지엄 단조기술의 진보
    • /
    • pp.74-80
    • /
    • 1995
  • Forged aluminum lower arm has been developed to provide weight reduction of suspension parts. It was utilized FEM analysis in design of parts. Prototype parts were producted to two shape & different forging condition. Difference of forging condition was manufacturing process of stock, forging press, forging die, heat treatment condition. As a result, weight reduction of 44%, 38% was achived. Strength and fatigue endurance of forged aluminum lower arm was excellent.

3 차원 프린팅 기술의 열간 체적 성형 공정 적용에 관한 기초 연구 - 예비형상 설계 예 및 열간 금형강으로 적층된 표면 특성 분석 (A Preliminary Study on the Application of Three-Dimensional (3D) Printing Technologies to Hot Bulk Forming Processes - Example of Preform Design and Investigation of Hot-working Tool Steel Deposited Surface)

  • 안동규;김세훈;이호진
    • 한국정밀공학회지
    • /
    • 제31권12호
    • /
    • pp.1093-1100
    • /
    • 2014
  • The goal of this paper is to investigate preliminary the applicability of 3D printing technologies for the development of the hot bulk forming process and die. 3D printing technology based on the plastic material was applied to the preform design of the hot forging process. Plastic hot forging dies were fabricated by Polyjet process for the physical simulation of the workpiece deformation. The feasibility of application of Laser-aided Direct Metal Rapid Tooling (DMT) process to the fabrication of the hot bulk metal forming die was investigated. The SKD61 hot-working tool steel was deposited on the heat treated SKD61 using the DMT process. Fundamental characteristics of SKD 61 hot-working tool steel deposited specimen were examined via hardness and wear experiments as well as the observation of the morphology. Using the results of the examination of fundamental characteristics, the applicability of the DMT process to manufacture hot bulk forming die was discussed.