• Title/Summary/Keyword: Forging Process

Search Result 845, Processing Time 0.036 seconds

Design of a Impeller Hub Cold Forging Process (토크 컨버터용 임펠러 허브의 냉간단조공정설계)

  • Kim, Young-Suk;Kim, Hyun-Soo;Kim, Chan-Il;Choi, Suk-Tak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.213-219
    • /
    • 2000
  • A impeller hub is usually made through three forging processes : forward extrustion, upsetting and finishing. The finishing process is closed die forging in which the load increases abruptly at the final stage, resulting in underfilling in the finished product due to insufficient load capacity of the press. In this study, the rigid-plastic finite element analysis was applied to the impeller hub forging process in order to optimize process and to estimate required load. As a result, two kind of improvements for the process were suggested to reduce the load requirement in the finishing process.

  • PDF

A Study on the Material Properties of Both End Sides of Preform and Forging Process in Large Crank Throw (대형 크랭크스로우의 예비성형체 양끝단부 재료특성과 단조공정에 관한 연구)

  • 김영득;김동영;김동권;김재철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1513-1516
    • /
    • 2003
  • A crank throw, which is one of the crankshaft part for a large diesel engine is manufactured by closed die forging or open die forging. For the purpose of improvement of productivity the open die forging is usually adopted these days. However it has disadvantage of low yield ratio compare to closed die forging. To overcome this problem, the material properties for hot top and bottom zones of ingot are investigated to utilize them to the product and a modified forging process to reduce the material loss of ingot body through forging analysis according to forging factors(a , R, Ø$\sub$B/, Ø$\sub$D/) is suggested.

  • PDF

Prediction of Void Crushing Behavior in Upset & Bloom Forging of Large Ingot (대형인곳의 업셋-블룸단조에서의 기공 압착 거동 예측)

  • Kwon I.K.;Kim K.H.;Youn Y.C.;Song M.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.325-328
    • /
    • 2004
  • This paper deals with void crushing behavior by ingot forging process which consists of sequential operations of upset forging and bloom forging. The predicted results of void crushing behavior by the simplified global-local method using F.E. analysis showed that the inherent void at the top region of the ingots remains incompletely crushed even after several forging operations. From the results of the hot upset forging test using the billets with drilled voids, it was found that the bonding efficiency of the void after forging process increases with an increase in deformation, and a decrease of initial diameter of voids.

  • PDF

A Study on Improving the Precision of Quantitative Prediction of Cold Forging Die Life Cycle Through Real Time Forging Load Measurement (실시간 성형하중 계측을 통한 냉간단조 금형수명 정량예측 정밀도 향상 연구)

  • Seo, Y.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.4
    • /
    • pp.172-178
    • /
    • 2021
  • The cold forging process induces material deformation in an enclosed space, generating a very high forging load. Therefore, it is mainly designed as a multi-stage process, and fatigue failure occurs in forging die due to cyclic load. Studies have been conducted previously to quantitatively predict the fatigue limit of cold forging dies, however, there was a limit to field application due to the large error range and the need for expert intervention. To solve this problem, we conducted a study on the introduction of a real-time forging load measurement technology and an automated system for quantitative prediction of die life cycle. As a result, it was possible to reduce the error range of the quantitative prediction of die life cycle to within ±7%, and it became possible to use the die life cycle calculation algorithm into an automated system.

Optimization of a Hot Forging Process Using Six Sigma Scheme and Computer Simulation Technology Considering Required Metal Flow tines (6시그마 기법과 컴퓨터 시뮬레이션 기술을 이용한 금속유동선도를 고려한 열간 단조공정의 최적화)

  • Moon H. K.;Moon S. C.;Eom J. G.;Joun M. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.798-803
    • /
    • 2005
  • In this paper, the six sigma scheme together with the rigid-viscoplastic finite element method is employed to obtain the optimal metal flow lines of a hot forging according to the six sigma processes, i.e., five steps such as define, measure, analyze, improve and control. Each step is investigated in detail to meet customer's requirements through improvement of product quality. A forging simulator is used for analysis of the metal flow lines of the hot forging, manufactured by a hot press forging machine, under various conditions of major factors determined at each step. The analyzed results are examined in order to reveal the effects of major factors on the metal flow lines and the formed shapes. The effects are then used to find an optimal process and the optimal process with die is devised and tested. The comparison between the required metal flow lines and the experiments shows that the approach is effective for optimal process design in hot forging considering metal flow lines.

Process and die designs for isothermal forging of the small-scale Ti-6Al-4V wing shape (Ti-6Al-4V 소형 날개형상의 항온단조 공정 및 금형설계)

  • Yeom J.T.;Park N.K.;Lee Y.H.;Shin T.J.;Hong S.S.;Shim I.O.;Hwang S.M.;Lee C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.114-117
    • /
    • 2004
  • The isothermal forging design of a Ti-6Al-4V wing shape was performed by 3D FE simulation. The design focuses on near-net shape forming by the single stage. The process variables such as the die design, pre-form shape and size, ram speed and forging temperature were investigated. The minimization of forging load and uniform strain distribution in a given forging condition were considered as main design factors. The FE simulation results fur the final process design were compared with the isothermal forging tests. Finally, the modified process design for producing the uniform Ti-6Al-4V wing product without forming defects was suggested.

  • PDF

Process Modification and Numerical Simulation for an Outer Race of a CV Joint using Multi-Stage Cold Forging (등속조인트용 외륜의 다단 냉간 단조공정을 위한 공정개선 및 유한요소 해석)

  • Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.23 no.4
    • /
    • pp.211-220
    • /
    • 2014
  • The outer race of a constant velocity (CV) joint having six inner ball grooves has traditionally been manufactured by multi-stage warm forging, which includes forward extrusion, upsetting, backward extrusions, necking, ironing and sizing, and machining. In the current study, a multi-stage cold forging process is examined and an assessment for replacing and modifying the conventional multi-stage warm forging is made. The proposed procedure is simplified to the backward extrusion of the conventional process, and the sizing and necking are combined into a single sizing-necking step. Thus, the forging surface of the six ball grooves can be obtained without additional machining. To verify the suitability of the proposed process, a 3-dimensional numerical simulation on each operation was performed. The forging loads were also predicted. In addition, a structural integrity evaluation for the tools was carried out. Based on the results, it is shown that the dimensional requirements of the outer race can be well met.

Precision Cold Forging of Spur Gear Using the Alloy Steel (합금강을 이용한 스퍼기어의 정밀 냉간 단조)

  • Choi, J.C.;Choi, Y.
    • Transactions of Materials Processing
    • /
    • v.6 no.6
    • /
    • pp.500-507
    • /
    • 1997
  • The conventional closed-die forgings had been applied to the forging of spur gears. But the forgings require high forging-pressure. In this paper, new precision forging technology have been developed. The developed technology is two steps forging process. Good shaped products are forged successfully with lower forging-pressure than those of conventional forging. The accuracy of the forged spur gear obtained by new precision forging technology is set nearly equal to that of cut spur gear of fourth and fifth class in Korean industrial standard.

  • PDF

Multistage Cold Forging Process Design of Al6082 Considering Forming Limit (Al6082의 가공한계를 고려한 냉간단조 공정설계)

  • Ann, Ku-Hee;Kang, Jong-Hun;Heo, Su-Jin;Shin, Tae-soo;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.93-99
    • /
    • 2020
  • Recently, as the weight reduction of vehicles has been actively progressed, parts developed using aluminum 60XX series from existing steel materials are increasing. In this paper, the bushing used for the front frame rail, which is one of the parts for fixing engines and other parts in automobiles, was changed to an aluminum material of the Al60XX series, and it was intended to be produced by applying of cold forging method. The bushing is a part that secures the engine frame, and in order to produce it by cold forging, the molding limit is predicted through process design, and a multi-stage process is designed through finite element analysis. In addition, in order to verify the feasibility of the designed forging process, the limits of the multi-step process were verified based on the Cockcroft Latham theory, and the crack and overlap of the actual forging work were predicted and improved.

A Study on the Forging Process Development of the Commutator of an Automotive Starting Motor (자동차용 시동 모터 정류자의 단조공정 개발에 관한 연구)

  • 서명규;배원병;정호승;조종래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.905-909
    • /
    • 2002
  • Commutators of a starting motor for automobiles has been produced through various processes such as forging, segmenting, and assembling. And the conventional method producing an automotive motor commutator is not appropriate for saving material and cost, because it makes each segment separated one by one. Therefore a new process design is required in oder to avoid the assembling process. In this study, a new process design of the commutator of an automotive starting motor has been carried out to save material and manufacturing time by FE analysis. In the FE analysis, three forging processes are proposed for producing the copper(ASTM Cl1000) commutators of a starting motor. And forging experiments are performed to make an unsegmented commutator in order to verify the theoretically proposed process. And then, in order to get the final product, the forged commutator is passed through various postprocessing such as resin terming, and machining. From the experimental result, the forging process proposed from the FE analysis is verified to be an economical method for producing the commutator of an automotive starting motor.

  • PDF