• Title/Summary/Keyword: Forging Piston

Search Result 39, Processing Time 0.02 seconds

Forward-Backward Extrusion Process Development of Piston-Pin by Flow Control (유동제어에 의한 피스톤 핀의 전${\cdot}$후방압출 공정 개발)

  • Park, Jong-Nam;Park, Tae-Joon;Kim, Byung-Min
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.1-12
    • /
    • 2001
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. Finally, the model experiment results are in good agreement with the FE simulation ones.

  • PDF

Finite Element Analysis of an Incremental Forming Process for Joining the Ball with the Socket of a Concave Piston Assembly (오목형 피스톤 조립체의 볼과 소켓의 체결을 위한 점진적 성형공정의 유한요소해석)

  • Lee, M.C.;Eom, J.G.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.353-358
    • /
    • 2006
  • A three-dimensional finite element approach to process analysis and design for joining the socket with the ball by a kind of the rotary forging processes is presented in this paper. The rigid-plastic finite element method is employed and its results are used to reduce the number of process design tryouts. The approach is applied to developing a concave piston assembly for a high pressure hydraulic pump. Experiments show that the developed piston assembly satisfies the quality requirement on geometrical tolerance.

  • PDF

Experimental Investigation on the Flow Control in Forward-Backward Extrusion of Piston-Pin for Automobile (자동차용 피스톤 핀의 전.후방압출에서 유동제어에 관한 실험적 연구)

  • Park, Jong-Nam;Park, Tae-Joon;Kim, Dong-Hwan;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1366-1375
    • /
    • 2002
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. The model experiment results are in good agreement with the FE simulation ones.

Rotary Forming Equipment for Precision Joining of the Ball and the Socket (볼과 소켓의 정밀 체결을 위한 회전성형 장치)

  • Jun, B.Y.;Eom, J.G.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.132-137
    • /
    • 2007
  • A double roll rotary forming equipment is presented in this paper. The equipment is developed for joining the socket with the ball of a concave piston assembly with its geometrical tolerance requirements satisfied. The equipment is composed of a lathe, a double roll system and a roll pressing unit driven by the hydraulic system. The workpiece rotates by spindle chuck of the lathe while the double roll system approaches perpendicularly to the central line of the workpiece. The equipment is successfully applied to precision joining of the ball and the socket fur the concave piston assembly of a high pressure hydraulic pump.

Process Design to Prevent Flow Defect of Piston-Pin for Automobile (자동차용 피스톤-핀의 유동결함 방지를 위한 공정설계)

  • 김동진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.155-158
    • /
    • 2000
  • Flow defect of a piston-pin for automobile parts is investigated in this study. In cold forging of piston-pin Lapping defect a kind of flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The finite element simulations are applied to analyze the flow defect. This study proposed processes for preventing flow defect by removing dead metal zone. Then the results are compared with the experiments for verification. These FE simulation results are in good agreement with the experimental ones.

  • PDF

OPTIMAL PREFORM DESGIN BY TRACING THE MATERIAL FLOW : APPLICATION TO PISTON FORGING

  • Hong J.T.;Lee S.R.;Park C.H.;Yang D.Y.;Chung W.J.;Park Y.B.;Kim Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.143-146
    • /
    • 2003
  • In this paper, a new preform design method is proposed to eliminate the excessive flash in metal forging process. After carrying out finite element simulation of the process with an initial billet, backward particle tracing is performed from the outlet of the flash. Then, the region which belongs to the flash is easily found .. The process is analyzed again with the redesigned billet which is removed that region the above mentioned region. The optimal preform shape which minimizes the amount of flash without changing the forgibility can be obtained in several iterations.

  • PDF

Forming of Compressor Piston Part of Metal Matrix Composites by Thixoforming Process (Thixoforming을 응용한 금속복합재료의 콤푸레서용 피스톤 제품의 성형)

  • 이동건;강충길
    • Transactions of Materials Processing
    • /
    • v.10 no.3
    • /
    • pp.223-234
    • /
    • 2001
  • The characteristics of thixoforming process can decrease liquid segregation because of the improvement in fluidity in a globular microstructure state and utilizes flow without an air entrapment. Therefore, in order to obtain the sound parts of metal matrix composites by using thixoforming process which has co-existing solidus-liquidus phase, it is very important to design a die shape property and to obtain the fabrication conditions which affect the unifomity of the solid fraction on unfilling state and various defects throughout the fabricated parts. The die designs and fabrication conditions to obtain the good piston part are proposed for thixoforging process of metal matrix composites. When reheated metal matrix composites billets were transferred to the closed die gate, thixoforging were carried out under the various pressure(60, 80, 100MPa) with controled forging speed. The mechanical properties such as hardness and tensile strength for thixoforged parts have been investigated after T6 heat treatment.

  • PDF

Friction Welding Process Analysis of Piston Rod in Marine Diesel Engine and Mechanical Properties of Welded Joint (선박 디젤 엔진용 피스톤 로드의 마찰용접 공정해석 용접부 기계적 특성)

  • Jeong, H.S.;Son, C.W.;Oh, J.S.;Choi, S.K.;Cho, J.R.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.236-242
    • /
    • 2011
  • The two objectives of this study were, first, to determine the optimal friction welding process parameters using finite element simulations and, second, to evaluate the mechanical properties of the friction welded zone for large piston rods in marine diesel engines. Since the diameters of the rod and its connecting part are very different, the manufacturing costs using friction welding are reduced compared to those using the forging process of a single piece. Modeling is a generally accepted method to significantly reduce the number of experimental trials needed when determining the optimal parameters. Therefore, because friction welding depends on many process parameters such as axial force, initial rotational speed and energy, amount of upset and working time, finite element simulations were performed. Then, friction welding experiments were carried out with the optimal process parameter conditions resulting from the simulations. The base material used in this investigation was AISI 4140 with a rod outer diameter of 280 mm and an inner diameter of 160 mm. In this study, various investigation methods, including microstructure characterization, hardness measurements and tensile and fatigue testing, were conducted in order to evaluate the mechanical properties of the friction welded zone.

Variation of Aluminum 6056 Alloy Properties with Respect to Heat Treatment and Forging Conditions for Fabrication of Piston Blocks for Automobile (열처리 및 단조조건에 따른 알루미늄 6056 소재의 특성변화 및 자동차의 피스톤 블록 설계)

  • Kim, Min Seok;Jung, Hyung Duck;Park, Hyo young;Choi, Jeong Mook;Kim, Jeong Min;Park, Joon Sik
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.552-558
    • /
    • 2015
  • The mechanical properties and microstructures of Aluminum 6056 alloys were investigated for their use in the fabrication of a piton block. The EN-AW6056 alloys exhibited a tensile strength of 375 MPa for a solution treatment temperature of $550^{\circ}C$ for 2 h followed by an aging treatment at $190^{\circ}C$ for 4 h. The microstructures of the heat treated specimen showed that the $Mg_2Si$ phase with a size of 3~5 um was dispersed throughout the aluminum matrix when the heat treatment was done. Moreover, in order to identify the forgeability of the specimen, upsetting tests were done. For up to 80 % of the upsetting ratio, the specimen maintained its original shape, and at above 80 % of the upsetting ratio, the specimen underwent crack development. The specimen was successfully forged without any defects with the examined material conditions. The material conditions together with the forging conditions are discussed in terms of the microstructures and mechanical properties.