Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.10.552

Variation of Aluminum 6056 Alloy Properties with Respect to Heat Treatment and Forging Conditions for Fabrication of Piston Blocks for Automobile  

Kim, Min Seok (Department of Materials Science and Engineering, Hanbat National University)
Jung, Hyung Duck (Department of Materials Science and Engineering, Hanbat National University)
Park, Hyo young (JINHAP Co. Ltd.)
Choi, Jeong Mook (JINHAP Co. Ltd.)
Kim, Jeong Min (Department of Materials Science and Engineering, Hanbat National University)
Park, Joon Sik (Department of Materials Science and Engineering, Hanbat National University)
Publication Information
Korean Journal of Materials Research / v.25, no.10, 2015 , pp. 552-558 More about this Journal
Abstract
The mechanical properties and microstructures of Aluminum 6056 alloys were investigated for their use in the fabrication of a piton block. The EN-AW6056 alloys exhibited a tensile strength of 375 MPa for a solution treatment temperature of $550^{\circ}C$ for 2 h followed by an aging treatment at $190^{\circ}C$ for 4 h. The microstructures of the heat treated specimen showed that the $Mg_2Si$ phase with a size of 3~5 um was dispersed throughout the aluminum matrix when the heat treatment was done. Moreover, in order to identify the forgeability of the specimen, upsetting tests were done. For up to 80 % of the upsetting ratio, the specimen maintained its original shape, and at above 80 % of the upsetting ratio, the specimen underwent crack development. The specimen was successfully forged without any defects with the examined material conditions. The material conditions together with the forging conditions are discussed in terms of the microstructures and mechanical properties.
Keywords
aluminum alloys; forging; heat treatment; SEM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Wang, H. Li, F. Miao, W. Sun, B. Fang, R. Song and Z. Zheng, Mater. Sci. Eng. A, 590, 267 (2014).   DOI   ScienceOn
2 J. C. Williams and E. A. Starke Jr., Acta Mater., 51, 5775 (2003).   DOI   ScienceOn
3 K. Hockauf, L.W. Meyer, M. Hockauf and T. Halle, J. Mater. Sci., 45, 4754 (2010).   DOI
4 R. Ghiaasiaan, X. Zeng and S. Shankar, Mater. Sci. Eng. A, 594, 260 (2014).   DOI   ScienceOn
5 G. Gerstmayr, G. Mori, H. Leitner and W. Eichlseder, Mater. Corros., 61, 379 (2010).
6 M. Pakdil, G.Cam, M. Kocak and S. Erim, Mater. Sci. Eng. A, 528, 7350 (2011).   DOI   ScienceOn
7 A. Asserin-Lebert, J. Besson and A. F. Gourgues, Sci. Eng. A, 395, 186 (2005).   DOI   ScienceOn
8 M. Vivas, P. Lours, C. Levaillant, A. Couret, M. J. Casampve and A. Coujou, Mater. Sci. Eng. A, 235, 664 (1997).
9 B. Milkereit and M. J. Starink, Mater. Des., 76, 117 (2015).   DOI   ScienceOn
10 Ch. Blanc, Y. Roques and G. Mankowski, Corros. Sci., 40, 1019 (1998).   DOI   ScienceOn
11 A. K. Gupta, B. K. Prasad, R. K. Pajnoo and S. Das, Trams. Nonferrous Met. Soc. China, 22, 1041 (2012).   DOI   ScienceOn
12 S. M. Hirth, G. J. Marshall, S. A. Court and D. J. Lloyd, Mater. Sci. Eng. A, 319, 452 (2001).
13 L. Ding, Z. Zhang, R. E. Sanders, Q. Liu and G. Yang, Mater. Sci. Eng. A, 627, 119 (2015).   DOI   ScienceOn
14 Y. Tang, L. Zhang and Y. Du, Calphad., 49, 58 (2015).   DOI   ScienceOn
15 B. C. Shang, Z. M. Yin, G. Wang, B. Liu and Z.Q. Huang, Mater. Des., 32, 3818 (2011).   DOI   ScienceOn
16 D. Schwerdt, B. Pyttel and C. Berger, Procedia Eng., 2, 1505 (2010).   DOI   ScienceOn